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ABSTRACT

Modern speech applications utilize acoustic models with billions of
parameters, and serve millions of users. Storing an acoustic model
for each user is costly. We show through the use of sparse regulariza-
tion, that it is possible to obtain competitive adaptation performance
by changing only a small fraction of the parameters of an acoustic
model. This allows for the compression of speaker-dependent mod-
els: a capability that has important implications for systems with
millions of users. We achieve a performance comparable to the best
Maximum A Posteriori (MAP) adaptation models while only adapt-
ing 5% of the acoustic model parameters. Thus it is possible to com-
press the speaker dependent acoustic models by close to a factor of
20. The proposed sparse adaptation criterion improves three aspects
of previous work: It combines �0 and �1 penalties, have different
adaptation rates for mean and variance parameters and is invariant to
affine transformations.

Index Terms— Bayesian prior, elastic net, non-smooth optimiza-
tion.

1. INTRODUCTION

Sparse representations are a powerful emerging model for complex
signals such as speech, [1, 2, 3]. The idea of using a sparse reg-
ularizer with Maximum A Posteriori (MAP) adaptation is not new,
[4]. Our previous paper on sparse adaptation used the same adap-
tation rate for the mean and variance parameters. Unfortunately,
MAP adaptation for tasks with amounts of data in the 10 minutes
to 10 hours range attain the best performance by aggressively adapt-
ing mean parameters while not adapting the variances at all. This
paper addresses the problem of adapting means and variances at dif-
ferent rates, and also combines the �1 and counting norm penalties
into a single combined sparse regularizer. Finally, the �1 penalty is
modified so that the sparsity structure does not change if both the un-
derlying training and adaptation data are simultaneously scaled and
shifted (an affine transform).

2. A BRIEF REVIEW OF MAP

We shall use Ξ = {μg,vg, ωg}Gg=1 to denote the parameters of our
acoustic model, where ξg = (μg,vg) are the mean and variance pa-
rameters associated with gaussian component g. Maximum A Pos-
teriori adaptation, [5], uses a Bayesian prior, P (Ξ) =

∏
g P (ξg) to

smooth the maximum likelihood (ML) estimate. The Bayesian like-
lihood can then be maximized using the following per component
auxilliary log likelihood

L(Ξ) =
∑
t

γg(xt) log
(
ωgN (xt;μg,Σg)

)
+ logP (ξg), (1)

where we have used γg(xt) = P(g|Ξold,xt) for the gaussian pos-
terior at time t. It has become quite common in speech recogni-
tion to assume diagonal covariance models Σg = diag(vg). If the
Bayesian prior also decouples across dimensions then the objective
function can be written L(Ξ) =

∑d
k=1 L({ωg, μkg, vkg}Gg=1), and

the parameters in each dimension can be estimated independently.
We therefore make the simplifying assumption that μg = μg and
vg = vg are one dimensional scalars in the rest of the paper.
The Bayesian prior P (ξg) in [5] was chosen to be a conjugate prior
given by the normal-Wishart distribution:

P (ξg)
def
= RMAP(ξg|ξold

g )

= P (μg, vg|μold
g , voldg , τμ, τv)P(ωg|ωold

g , τω)

∝
⎛
⎝e−

(μ−μold)2

2v√
2πv

⎞
⎠

τμ
⎛
⎝ v−αe−

vold

v

(vold)−α−1Γ(α+ 1)

⎞
⎠

τv (
ω

ωold
g

g

)τω

.

This prior makes the parameter estimation straightforward. In the
case of no Bayesian prior (τμ = τv = τω = 0) the ML solution is

ωML
g =

1

T

T∑
t=1

γg(xt), μML
g =

1

Tg

T∑
t=1

γg(xt)xt, (2)

vML
g =

1

Tg

T∑
t=1

γg(xt)x
2
t − (μML

g )2 (3)

where Tg = TωML
g =

∑T
t=1 γg(xt). In terms of the maximum

likelihood solution the objective functions can be written

L(ξg) = −Tg

2

(
(μg − μML

g )2 + vML
g

vg
+ log(vg)

)
(4)

+Tg log(ωg) + logP (ξg)

= −(Tg + τμ)
(μg − μMAP

g )2

2vg
(5)

−(Tg + τμ + ατv)

(
vMAP
g

2vg
+

1

2
log(vg)

)

+(TωML
g + τωω

old
g ) logωg,

where

ωMAP
g =

TωML
g + τωω

old
g

T + τω
(6)

μMAP
g =

Tgμ
ML
g + τμμ

old
g

Tg + τμ
(7)

vMAP
g =

Tgτμ
Tg+τμ

(μML
g − μold

g )2 + Tgv
ML
g + τvv

old
g

Tg + τμ + ατv
. (8)
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It is straightforward to verify that μMAP and vMAP are values that
maximizes L(ξg).
In our previous paper, [4], we chose the hyper-parameters to be τμ =
τv = τω = τ , α = 0. This makes the Bayesian log-prior particularly
simple and MAP adaptation in this case corresponds to I-smoothing
as described in [6]. Unfortunately, for the best performance we had
to sacrifice simplicity. We will see in the experiment section that
the best results for MAP adaptation on our data was obtained for
τμ = τω = τ , τv =∞, α = 1.

3. SPARSITY PROMOTING BAYESIAN PRIORS

In order to compactly store the speaker specific acoustic model we
can store the differences ξg − ξold

g instead of the models themselves
(ξg). Since the parameters change very little we can save storage by
storing only the significant differences. By using a Bayesian prior
with sparse regularisation, only the significant parameters will be
allowed to have non-zero values. We shall consider the following
such Bayesian prior:

P (ξg) ∝ RMAP(ξg|ξold
g )Rsparse(ξg|ξold

g )

where

logRsparse(ξg|ξold
g ) = −λ1μ|μg − μold

g | − λ1v|vg − voldg | (9)

−λ0μ‖μg − μold
g ‖0 − λ0v‖vg − voldg ‖0,

and ‖x‖0 is defined to be 0 if x = 0 and 1 otherwise. The first part
is a weighted �1 penalty and the second part is a weighted count of
the parameter changes. This sparse regularizer is not differentiable
or continuous, but it is piecewise continuous and differentiable. For
example it is continuous in μ, v on the quadrant μ > μold, v >
vold, and likewise continuous in μ on the line segment μ < μold,
v = vold. Therefore we can find all local maxima by considering
separately the 9 different pieces for which the function is continuous.
We will show how to find the global maximum in the next section.

3.1. Affine Invariance

If we change the adaptation data by a linear transform xt → axt+ b
then the corresponding maximum likelihood estimates changes in a
predictable manner: μML

g → aμML
g + b, vML

g → a2vML
g . Likewise

if the training data undergoes the same linear transform then the base
acoustic model will be changed similarly: μold

g → aμold
g +b, voldg →

a2voldg . We will say that an adaptation model is invariant to affine
transforms if the adapted model undergoes the same transform. This
is a property that the MAP adaptation estimate satisfies: μMAP

g →
aμMAP

g + b, vMAP
g → a2vMAP

g . We would like the same to be true
for the sparse estimate. For that to be the case we need the sparse
regularizer Rsparse(ξg|ξold

g ) to be invariant to affine transformation.
The proposed sparse regularizer (9) is not invariant to scaling, but the
following modified regularizer is now scale-invariant and therefore
also invariant to affine transformations:

logRsparse(ξg|ξold
g ) = − λ1μ√

voldg

|μg − μold
g | − λ1v

voldg

|vg − voldg |

−λ0μ‖μg − μold
g ‖0 − λ0v‖vg − voldg ‖0,

If we use the last sparse regularizer together with the general MAP
regularizer we will have corrected the three shortcomings of our
previous paper. The described regularizer gives affine invariance,
a combined counting norm and �1 norm regularizer and different
adaptation rates for the mean and variance parameters.

4. ANALYTIC OPTIMIZATION

Despite the fact that neither the function nor its derivative is con-
tinuous everywhere, we can still find the global optimum analyti-
cally. This remarkable fact ensures that there is very little added
computational cost to use a sparse regularizer. We show how to
find the analytic solution in this section. Instead of maximizing
the Bayesian likelihood, L(ξg), we minimize the negative log likeli-
hood, F (ξg) = −L(ξg). Omitting terms related to ωg , the objective
function F (μg, vg) can be written:

F (ξg) = F (ξg; ξ
old
g , ξML

g , τμ, τv, α, λ0μ, λ0v, λ1μ, λ1v)

= (Tg + τμ)
(μg − μMAP

g )2

2vg
(10)

+(Tg + τμ + ατv)

(
vMAP
g

2vg
+

1

2
log(vg)

)

+
λ1μ√
voldg

|μg − μold
g |+ λ1v

voldg

|vg − voldg |

+λ0μ‖μg − μold
g ‖0 + λ0v‖vg − voldg ‖0,

Let’s consider a local minimum of F occuring in the interior of the
lower quadrant defined by μg < μold

g , vg < voldg . Defining Tμ =

(Tg + τμ)/2, Tv = (Tg + τμ + ατv)/2, λ̂1μ = λ1μ/
√

voldg and

λ̂1v = λ1v/v
old
g the function on this quadrant equals:

F (ξg) = Tμ
(μg − μMAP

g )2

vg
+ Tv(

vMAP
g

vg
+ log(vg)) (11)

−λ̂1μ(μg − μold
g )− λ̂1v(vg − voldg ) + λ0μ + λ0v.

The corresponding partial derivatives are

∂F

∂μg
= 2Tμ

(μg − μMAP
g )

vg
− λ̂1μ

∂F

∂vg
= −Tμ

(μg − μMAP
g )2

v2g
+ Tv(

−vMAP
g

v2g
+

1

vg
)− λ̂1v.

The local minimum can be found by solving the critical equations.

The first derivative is zero when (μg −μMAP
g )/vg = λ̂1μ/(2Tμ). If

we substitute this into the expression for the second derivative, then
the second derivative is zero when

0 = −Tμ

(
λ̂1μ

2Tμ

)2

+ Tv(
−vMAP

g

v2g
+

1

vg
)− λ̂1v,

or equivalently

0 = vMAP
g − vg + v2g

(
(λ̂1μ)

2

4TμTv
+

λ̂1v

Tv

)
(12)

If we define

β =

(
(λ̂1μ)

2

4TμTv
+

λ̂1v

Tv

)

the two solutions to (12) are:

vg =
1±√1− 4βvMAP

g

2β
. (13)

It can be seen that the first of smallest of these two roots corresponds
to a local minimum since the derivative with respect to vg goes to
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−∞ as vg → 0. The second root corresponds to a local maximum.
We conclude that

vg =
1−√1− 4βvMAP

g

2β

μg = μMAP
g +

λ̂1μvg
2Tμ

is a valid solution if 4βvMAP
g ≤ 1, vg < voldg and μg < μold

g . The
solution for the other regions are no more difficult. The complete
solution is given in Algorithm 1.

5. EXPERIMENTS

5.1. Task Description

We used an internal US English speech recognition task for all exper-
iments. The training set consists of 2000 hours of recordings. The
test and adaptation sets were collected from the same set of 26 speak-
ers. The enrollment data used for adaptation consists of 2.8 ± 1.5
hours of data per speaker with known transcripts. The test data has
7-20 minutes per speaker (52K words in total). Acoustic features
were constructed from 12 dimensional Mel-frequency Cepstra co-
efficients and their first, second and third derivative, followed by a
Linear Discriminant Analysis (LDA) projection.
The acoustic model had 5000 HMM states and 200,000 gaussian
components. A Constrained Maximum Likelihood Linear Regres-
sion (CMLLR) transform, [7], was learned for each speaker in the
training database. In the transformed feature space, we then trained
a “canonical acoustic model” using speaker adaptive training (SAT),
[8]. At test time we only used the canonical acoustic model. The
canonical acoustic model was trained using feature space minimum
phone error rate (fMPE) and discriminative Minimum Phone Error
(MPE), as described in [9, 10].

5.2. Baseline MAP Results

Table 1 shows the baseline word error rates (WER) with and with-
out MAP adaptation. The baseline WER for Ξold was 13.2%, which
with a typical MAP adaptation setting (τμ = τv = 100, α = 0) gave
a 17% reduction of the WER to 10.9%. The best MAP adaptation
results was 10.5%, and was attained by not adapting any of the vari-
ance parameters (τμ = 100, τv = ∞, α = 1). As we did not want
to compromise on accuracy, this model became the baseline MAP
model for all our experiments with sparsity. Table 1 also shows re-
sults when we use maximum likelihood estimation to create the new
model. Since there are many states for which there is only one or
two data points, the variance estimate becomes particularly unreli-
able (for states with no data, we leave the gaussians unchanged).
Maximum likelihood estimation for all the parameters almost dou-
bles the WER, while only applying maximum likelihood estimation
to means gives a WER 11.2%.
In Table 2 we can see results for various settings of τμ, τv and α. As
seen in the table, the best WER is reached when τv = ∞. In other
words we were not able to extract any useful information from the
variance parameters. We did not investigate whether this was due to
the small amount of data or the fact that the base acoustic model was
trained using a discriminative objective function.

5.3. Sparse MAP Adaptation Results

In Table 3 we give the word error rate and percentage of parameters
that do not change (we call this the sparsity). Without any sparsity

input : Statistics s, Tg , model μold
g , voldg and penalty

parameters τμ, τv, α, λ0μ, λ0v, λ1μ, λ1v

output: Global minimum μmin, vmin

Compute: μML
g = s1, vML

g = s2 − s21

μMAP
g =

Tgμ
ML
g +τμμold

g

Tg+τμ

vMAP
g =

Tgτμ
Tg+τμ

(μML
g −μold

g )2+Tgv
ML
g +τvv

old
g

Tg+τμ+ατv

T1 = (Tg + τμ)/2, T2 = (Tg + τμ + ατv)/2

Update: λ1μ ← λ1μ√
vold
g

, λ1v ← λ1v

vold
g

Ftest = F (μold
g , voldg )

Initialize: (Fmin, μmin, vmin) = (Ftest, μ
old
g , voldg )

for δ ∈ {−1, 1} do

μg = μMAP
g − δλ1μvold

g

2T1

if δ(μg − μold
g ) > 0 then

Ftest = F (μg, v
old
g )

if Ftest < Fmin then
(Fmin, μmin, vmin) = (Ftest, μg, v

old
g )

end
end
for ε ∈ {−1, 1} do

v∗g = T1
T2

(μold
g − μMAP

g )2 + vMAP
g

if 1 + 4εv∗gλ1v/T2 ≥ 0 then

vg =
1−
√

1+4εv∗
gλ1v/T2

−2ελ1v/T2

if ε(vg − voldg ) > 0 then
Ftest = F (μold

g , vg)
if Ftest < Fmin then
(Fmin, μmin, vmin) = (Ftest, μ

old
g , vg)

end
end

end
for ε ∈ {−1, 1} do

β =
λ2
1μ−4εT1λ1v

4T1T2

if 1− 4βvMAP
g ≥ 0 then

for δ ∈ {−1, 1} do

vg =

{
vMAP
g if β = 0

1−
√

1−4βvMAP
g

2β
if β �= 0

μg = μMAP
g − δ

λ1μ

2T1
vg

if δ(μg − μold
g ) > 0 and ε(vg − voldg ) > 0 then

Ftest = F (μg, vg)
if Ftest < Fmin then
(Fmin, μmin, vmin) = (Ftest, μg, vg)

end
end

end
end

Algorithm 1: The global minimum of (10).
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System WER

SAT+FMPE+CMLLR (no adaptation) 13.2%
ML (μg and vg) 23.8%
ML (μg only) 11.2%
MAP τμ = τv = 100, α = 0 10.9%
MAP, τμ = 100, τv =∞, α = 1 10.5%

Table 1. Word error rates for baseline systems

τμ τv α Sparsity WER

50 50 0 2% 11.3%
100 100 0 2% 10.9%
500 500 0 2% 10.9%

1000 1000 0 2% 11.2%
100 100 1 2% 10.9%
100 1000 0.9 2% 10.7%

100 106 1 2% 10.5%
100 ∞ 1 52% 10.5%

Table 2. Word error rates for MAP systems for various values of τμ,
τv and α.

promoting penalty MAP results in 52% sparsity – all the variances
are left unchanged and about 2% of the gaussians corresponded to
states with no data. If we try to optimize the word error rate with re-
spect to all of the parameters τμ, τv , α, λ0μ, λ0v , λ1μ and λ1v then
the best word error rate we can achieve is 10.4%. This system used
both the MAP, �1 and �0 parts of the penalty: τμ = 50, λ0μ = 0.1,
λ1μ = 0.3. We don’t believe, however, that this is a significant im-
provement over the MAP baseline. To verify that the sparse penalty
with affine invariance is better than (9) we repeated this experiment
with (9). To match the 84% sparsity we found the corresponding
λ1μ = 0.02 gave a WER of 10.5%. We found this to be consistently
the case – that the affine invariant penalty was marginally better than
the sparse penalty (9).

The highest sparsity we could obtain without degrading the WER
was 92%. This system used τμ = 100, λ0μ = 0.3, λ1μ = 1. The
table also lists the best system we could get at a sparsity level of 95%
and 98%. For 95% sparsity the optimal system could be obtained
without activating the �1 penalty. This system had a WER of 10.6%
– a small degradation. For the more aggressive 98% sparsity level
the WER was 10.8%.

6. DISCUSSION

We have shown through the use of sparse regularization, that it
is possible to obtain competitive MAP adaptation performance by
changing only a small fraction of the parameters of an acoustic
model. This allows for the compression of speaker-dependent mod-
els: a capability that has important implications for systems with
millions of users. At a 95% sparsity level the speaker dependent
acoustic models could be compressed by a maximum factor of 20.
If the actual locations of the changed parameters can be stored ef-
ficiently we can hope to get close to the factor of 20. Since all
the variances are unchanged and a large fraction of the gaussians
remain unchanged, it is only a small fraction of the gaussians for
which the change locations need to be encoded. The entropy of the
binary mask for the remaining parameter change locations suggests

τμ λ0μ λ0v λ1μ λ1v Sparsity WER

100 0 0 0 ∞ 52% 10.5%
100 0 0 0.3 ∞ 73% 10.5%
100 0 0 1 ∞ 83% 10.6%
50 0 0 0.3 ∞ 73% 10.5%
15 0 0 0.3 ∞ 73% 10.6%
50 0.1 0 0.3 ∞ 84% 10.4%
25 0.3 0 1 ∞ 92% 10.5%

100 1.0 ∞ 0 0 95% 10.6%
50 2.0 0 0.3 ∞ 98% 10.8%

Table 3. Word error rates for sparse MAP systems for various values
of τμ, λ0μ, λ0v , λ1μ and λ1v . We used α = 1 and τv = 0 in all
these experiments.

that a Huffman coding, [11], would obtain a compression factor
close to 20. Future work should compare and potentially combine
sparse methods with parameter tying methods such as CMLLR with
multiple transforms.
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