
EASY DOES IT: ROBUST SPECTRO-TEMPORAL MANY-STREAM ASR WITHOUT FINE
TUNING STREAMS

Suman V. Ravuri and Nelson Morgan

International Computer Science Institute, Berkeley, CA 94704, USA
University of California - Berkeley, Berkeley, CA 94704, USA

ABSTRACT

Previous work has shown that spectro-temporal features re-
duce the word error rate for automatic speech recognition
under noisy conditions. These systems, however, required
significant hand-tuning in order to determine which spectral
and temporal modulations should be included in a particu-
lar stream. In this work, streams are split into one spec-
tral and temporal modulation each and their posterior prob-
abilities are combined once each stream is discriminatively
trained via multilayer perceptron. We show that this combi-
nation structure performs as well or better than more elabo-
rate methods in which multiple spectral and temporal mod-
ulations are hand-picked per stream. In addition, these type
of features outperform standard noise-robust features such as
the “Advanced Front End” features, whereas our hand-picked
spectro-temporal features do not.

Index Terms— automatic speech recognition, spectro-
temporal features

1. INTRODUCTION

Cortically-inspired spectro-temporal features, which capture
spectral and temporal modulations, have successfully been
applied to a number of speech recognition and discrimina-
tion tasks [1, 2, 3, 4, 5]. In particular, [5, 6] demonstrate that
spectro-temporal features in a Tandem setup (as described by
[7]) perform quite well in automatic speech recognition tasks
under noisy conditions. We surmise that the spectro-temporal
feature calculation, which filters the log mel-spectra to em-
phasize many different spectral and temporal modulations, is
able to emphasize components of the time-frequency plane
that are usable for speech recognition, even if other sections
are corrupted. This framework tends to generate many more
features than are typically used in ASR, many of which may
be highly correlated with one another.

The problem with existing approaches, especially [5, 6],
is that these systems require significant hand-tuning to per-
form well on ASR tasks. Specifically, the features have to be
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segmented into streams (i.e., bundled into particular spectral
and temporal modulations) prior to discriminative training to
be used as features. While the discriminative training does
not pose a problem, the modulations included in a particular
stream are generally hand-tuned and the structure of streams
that perform well for one task may not be optimal for another.

In this paper, we propose an alternative and simpler
method of stream segmentation; each stream contains only
one spectro-temporal modulation. Figure 1 shows one way
of visualizing this operation. Given an auditory spectogram
(which is calculated for many features such as MFCC or PLP
features), spectro-temporal processing at one particular spec-
tral and temporal modulation yields a “cortical spectrogram”,
and one can create many cortical spectrograms by filtering
the auditory spectrogram at different spectral and temporal
modulations. Each of these cortical spectrograms can be con-
sidered a separate stream. The advantage of this approach is
that it does not require the hand-tuning step of determining
which features are to be included in a single stream. Although
a priori these cortical spectrograms seem like a poor choice
for streams, since certain cortical spectrograms may not be
able to classify certain phones, we will show that this setup
outperforms an approach by which the temporal modulations
and spectral modulations have been hand-picked for strong
performance.

2. FEATURES

In this paper, all spectro-temporalfiltering is performed on the
log mel-spectra (such as the filterbank features generated by
HTK). While other methods for generating spectro-temporal
receptor fields (STRFs) exist, our approach follows multiply-
ing a complex sinusoid by a Gaussian envelope. The complex
sinusoid (with ωf and ωt denoting the spectral and temporal
modulation frequencies, respectively) is represented as:

C(f, t|ωf , ωt, f0, t0) = exp(i(ωf (f − f0) + ωt(t − t0))

while the Gaussian envelope (with parameters σf and σt de-
noting the standard deviation in the spectral and temporal
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axes) is represented as:
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Here, σf = π
ωf

and σt = π
|ωt|

. Then, given the log mel spec-

trogramS(f, t) and Gabor filter F (f, t|ωf , ωt, σf , σt, f0, t0) =
C(f, t|ωf , ωt, f0, t0)G(f, t|f0, t0, σf , σt), one can calculate
the cortical spectrogram Ŝ(f, t):

Ŝ(f0, t0) =
∑

t

∑

f

F (f, t|ωf , ωt, σf , σt, f0, t0)S(f, t)

In practice, the filter is truncated after 3.0 spectral and tempo-
ral periods. Since the output to the filter is complex, one can
use either the real or imaginary output of the filter. As both
real and imaginary parts exhibit desired spectral and tempo-
ral modulation characteristics, we use both components. Fi-
nally, log mel-spectrogram values are copied at the edges in
order to reduce edge effects that would occur if the log mel-
spectrogram were padded with zeros.

Since the dimensionality of the output features is ex-
tremely high, one cannot simply use the concatenated features
as an input to a multilayer perceptron. In our proposed sys-
tem, the output features are separated into different streams,
each of which is a log mel-filterbank processed by only one
spectral and temporal modulation. Table 1 shows the range
of spectral and temporal modulations used in the 172 streams
(which correspond to each spectro-temporal modulation in
the table doubled for real and imaginary components). Each
stream serves as an input for a multilayer perceptron. The
structure of the MLP is as follows: 567 input units - which
corresponds to 21 spectral features with first and second
derivatives and 9 frames of context, 500 hidden units, and 56
output units (each of which corresponds to an English phone).

The outputs of the MLP stream provide an estimate of
the posterior probability distribution for phones. We combine
each of these phone probability estimates across streams by
inverse entropy. For each stream i, an entropy of the output
posteriors at frame f , denoted as entropyif can be calculated.
Then, the weight for stream i at frame f , wif , is calculated as:

wif =
1/entropyif∑n

j=1
1/entropyif

We then apply the Karhunen-Loève Transform to the log-
probabilities of the merged MLPs to reduce the dimension-
ality to 32 dimensions and orthogonalize those dimensions.
Next, the features are mean and variance normalized by ut-
terance and finally appended to the MFCC feature. Figure 2
outlines the steps of this process. We will denote this system
as the uni-modulation system.

3. EXPERIMENTAL SETUP

The dataset used for this paper is the Numbers95 Corpus
described in [8]. The corpus consists of various numeric por-

Fig. 1. Visualization of generating cortical spectrograms from
auditory spectrograms.

Fig. 2. Diagram of processing of the MLP streams.

tions extracted from telephone dialogues of male and female
American-English speakers, with the vocabulary size of 32
words. This training set contains 3590 utterances of clean
data, totaling roughly 3 hours, while the two test sets each
contains 1227 utterances. The first contains only clean data,
while the second contains the same utterances with noise
added at five signal-to-noise ratios (20dB, 15dB, 10dB, 5dB,
and 0dB). The noises used in the test set are from the RSG-
10 collection (described in [9]) and include speech babble,
factory floor noise, Volvo car-interior noise, F-16 fighter-jet
cockpit noise, Leopard tank-interior noise, and Destroyer bat-
tleship operations-room-interior noise. The noises are added
in same manner as the Aurora2 corpus.

SRI’s DECIPHER recognizer is used for the Numbers95
experiment. The MFCCs are vocal tract length and mean and
covariance normalized on a per-speaker basis. The recog-
nizer uses gender-independent, within-word triphone Hidden
Markov Models (HMMs); cross-word triphone models are
not utilized. Moreover, DECIPHER also includes decision-
tree clustering of states and genonic mixture tying described
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Spectral Temporal
Mod. (1/chan) Mod.(Hz)

0.04 ±6, ±9, ±14.2, ±25, ±50
0.13 ±6, ±9, ±14.2, ±25, ±50
0.24 ±6, ±9, ±14.2, ±25, ±50
0.36 ±6, ±9, ±14.2, ±25, ±50
0.5 ±6, ±9, ±14.2, ±25, ±50

0.04, 0.06, . . . , 0.46, 0.48 0
0.00 6, 6.7, 7.7, 9, 8.3, 10, 11.1
0.00 12.5, 14.2, 16.6, 20, 25, 33.3

Table 1. Range of spectro-temporal modulation frequencies
used for the uni-modulation system. Each streams comprises
one spectro-temporal modulation (e.g., one stream contains
features spectrally modulated at 0.04 chan−1 and temporal
modulated at 6Hz, another features spectrally modulated at
0.04 chan−1 and temporal modulated at -6Hz, etc.) Each
modulation generates a real and imaginary component, each
of which is separated into different streams.

in [10].
In this paper, we compare our proposed system to three

different baselines. The first uses standard MFCC features
with first and second derivatives, while the second is the “Ad-
vanced Front End” (AFE) feature proposed in [11], and the
third is the 4-stream system proposed in [12] . We use the
AFE system as a baseline since it performed well on the Au-
rora2 noisy digit task, and the 4-stream system since it per-
formed well on the Numbers95 task, shares the same Tan-
dem architecture as the proposed system, and unlike the uni-
modulation streams, is hand-tuned for good performance.

The 4-stream system contains the same modulations as
the uni-modulation system, but each stream contains features
filtered at many different spectro-temporal modulations. Ta-
ble 2 shows the spectral and temporal modulations included in
each stream of the 4-stream system. Each stream in the base-
line spectro-temporal system employs a network architecture
optimized for the best ASR results. In this work, all streams
in the 4-stream system use a 160 unit hidden layer. Although
using this network structure results in the number of parame-
ters not being equal to the uni-modulation streams, changing
the hidden layer for the baseline systems such that it matches
the number of parameters in the uni-modulation system yields
significantly poorer performance. Thus, to ensure a fair com-
parison, we optimize the hidden layer of the baseline systems
to give the best recognition results. Finally, the MLP posteri-
ors for the spectro-temporal baseline are combined by inverse
entropy and the output posteriors are processed in the same
manner as the uni-modulation system described in Section 2.

4. EVALUATION RESULTS

Table 3 displays the results for the three baseline systems -
MFCC, AFE, and MFCC + 4-stream spectro-temporal - and

Feature Spectral Temporal
Stream No. Mod. (1/chan) Mod. (Hz)

(No. of features)
0.04, ... ,0.5 ±50

1 0.04 ±25
(462) 0.04, 0.06, . . . , 0.14 0

0.00 20, 25, 33.3, 50
0.13, ..., 0.5 ±25

2 0.04, 0.13 ±14.2
(462) 0.16, 0.18, . . . , 0.26 0

0.00 11.1, 12.5, 14.2, 16.6
0.24, 0.36, 0.5 ±14.2

3 0.04, 0.13, 0.24 ±9
(462) 0.28, 0.30, . . . , 0.38 0

0 7.7, 9, 8.3, 10
0.36, 0.5 ±9

4 0.04, ..., 0.5 ±6
(462) 0.40, 0.42, . . . , 0.48 0

0.00 6, 6.7, 7.7

Table 2. Range of spectro-temporal modulation frequencies
captured by each of the 4 feature streams.

Feature Clean Noisy Clean Noisy
WER WER Rel. Impr. Rel. Impr.

MFCC 2.94% 17.66% N/A N/A
AFE 4.65% 15.03% -58.16% 14.89%

4-stream 2.61% 16.50% 11.22% 6.57%
uni-mod. 2.52% 14.08% 14.29% 20.27%

Table 3. WER on Number95 test set in mismatched condi-
tions. The noisy case is averaged across noise conditions and
noise levels from 20dB to 0dB. All specto-temporal systems
combine output posteriors using inverse entropy.

the proposed MFCC + uni-modulation spectro-temporal sys-
tem. The proposed system outperformed the three other base-
line systems in both clean and noise-added conditions. This
includes AFE, which is specifically designed to reduce errors
in a noise-added numbers test setup, and the 4-stream sys-
tem, whose partitioning of spectro-temporal features were de-
signed specifically to work well on the Numbers95 test set.1

Table 5 suggests why the uni-modulation systems outper-
form streams in which many modulations are used. Despite
the fact that individual streams of the uni-modulation system
on average perform more poorly on the phone classification

1Note that AFE performed better than the 4-stream spectro-temporal sys-
tem on noise-added test set, but was significantly worse than all systems on
the clean condition. To ensure that this result was not a bug in the feature
calculation, we ran the same binary on the first four noises of the Aurora test
set, and achieved word error rates of .903% and 12.41% on clean and 20-0dB
SNR-averaged test sets respectively, which nearly matches the results in [13].
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System Clean Test Noisy Test
Phone Accuracy Phone Accuracy

4-stream 73.97%± 0.27% 57.52%± 0.08%
uni-mod. spectral 70.31%± 3.87% 52.68%± 4.45%

Table 4. Mean phone accuracy of individual streams
for clean and noisy test scenarios of 4-stream and uni-
modulation spectro-temporal systems.

System Clean Test Noisy Test
Phone Accuracy Phone Accuracy

4-stream 78.13% 60.98%
uni-mod. spectral 80.43% 69.03%

Table 5. Phone accuracy of combined streams for clean and
noisy test scenarios of 4-stream and uni-modulation spectro-
temporal systems.

than those for the 4-stream system (as shown in Table 4), the
combined stream for the uni-modulation system is better in
both the clean and noisy test conditions than for the 4-stream
system. This is especially pronounced in the noise-added test
condition, in which the uni-modulation system outperformed
the 4-stream system by over 8% absolute. We surmise that
while noise may completely corrupt whole streams in the uni-
modulation system, there are other streams that are robust
to a particular type of noise. By contrast, all streams in the
4-stream system are partially corrupted, leading to generally
poorer results in phone and recognition accuracy.

5. FUTURE WORK

Despite the promising results, some open questions remain.
One is if these features will work in real noisy situations. The
Numbers95 corpus has the limitation that the noise is artifi-
cially added, and a number of effects present in real noisy
situations, such as the Lombard effect, may change the per-
formance of spectro-temporal features.

Another question is what spectral or temporal features are
important for robust ASR. The spectral and temporal modula-
tions included in this paper were picked because such features
worked in [5] in a far different stream structure. This does not
necessarily imply that these features are optimal for these ex-
periments or adequately cover the range of spectral and tem-
poral modulations needed for robust speech recognition.

Finally, we have combined streams via inverse entropy,
but how to optimally combine streams still remains an open
problem. It might be best to focus on this problem, as well as
on the input features for spectro-temporal processing, rather
than worrying about optimizing stream compositions.
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