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ABSTRACT

In this paper, we propose a novel acoustic model adaptation method
for noise robust speech recognition. Model combination is a com-
mon way to adapt acoustic models to a target test environment. For
example, the mean supervectors of the adapted model are obtained
as a linear combination of mean supervectors of many pre-trained
environment-dependent acoustic models. Usually, the combination
weights are estimated using a maximum likelihood (ML) criterion
and the weights are nonzero for all the mean supervectors. We pro-
pose to estimate the weights by using Lasso (least absolute shrink-
age and selection operator) which imposes an 𝐿1 regularization term
in the weight estimation problem to shrink some weights to exactly
zero. Our study shows that Lasso usually shrinks to zero the weights
of those mean supervectors not relevant to the test environment. By
removing some nonrelevant supervectors, the obtained mean super-
vectors are found to be more robust against noise distortions. Ex-
perimental results on Aurora-2 task show that the Lasso-based mean
combination consistently outperforms ML-based combination.

Index Terms— noise robust speech recognition, model adapta-
tion, 𝐿1 regularization, Lasso regression, model combination.

1. INTRODUCTION

The performance of automatic speech recognition (ASR) degrades
significantly when the training and test environment conditions are
different, e.g. recognizing noisy speech using clean trained acous-
tic model. The key to improve the robustness of ASR is to reduce
the mismatch between the training and test conditions. Common ap-
proaches include feature compensation/normalization methods [1, 2]
which make the clean and noisy features similar to each other and
model adaptation methods (e.g. [3, 4]) which adapt the clean acous-
tic model towards the noisy test condition.

Another common practice in noise robust ASR is to use multi-
style training (MST) [5] which uses speech data from many environ-
ments to train a single acoustic model. Since this MST model needs
to cover different kinds of environments, it doesn’t perform very well
in each individual test environment. One solution is to build a set of
acoustic models, each modeling one specific environment. During
recognition, all these models are combined together, usually with the
maximum likelihood (ML) criterion, to construct a target model to
recognize the current test utterance. Methods belonging to this cate-
gory include eigenvoice [6] which builds the target model by linearly
combining basis mean supervectors.

The problem of ML model combination is that usually all com-
bination weights are not zero, i.e., every environment-dependent

model contributes to the final model. This is obviously not optimal
if the test environment is exactly the same as one of the training en-
vironment. There is also such a scenario that the testing environment
can be well approximated by interpolating only several training en-
vironments. Including unrelated models into the construction brings
unnecessary distortion to the target model.

In this paper, we propose an environment model combination
method based on Lasso (least absolute shrinkage and selection oper-
ator) [7] which uses an 𝐿1 regularization term to regularize the com-
bination weights. The 𝐿1 regularization term shrinks some weights
to exactly zero. In this way, the target model can be combined from
the related environment models, without the distortion brought from
unrelated environment models. This is demonstrated by experiments
on Aurora-2 test set A, which has the matched testing environment
as training. Moreover, experiments on all the Aurora-2 test sets show
that the Lasso-based model combination is consistently better than
the ML-based model combination.

The organization of this paper is as follows. In section 2, the
model combination approach to robust speech recognition is de-
scribed and both the ML and Lasso estimation of the combination
weights are presented. In section 3, the estimated weights are inves-
tigated and recognition performance is evaluated on Aurora-2 task.
Finally, we conclude in section 4.

2. LASSO-BASED MODEL COMBINATION

2.1. Model Adaptation by Model Combination

Assume there are 𝑁 acoustic models, each representing a specific
environment condition. Furthermore, assume that these environment
models are adapted from a single seed model (e.g. a model trained in
multi-style) by adapting the mean vectors while keeping the covari-
ance matrices unchanged. During recognition, to adapt the acous-
tic model to the test condition, the mean supervector of the adapted
model is obtained as a linear combination of the mean supervectors
of the environment-dependent models:

s′ =
𝑁∑
𝑖=1

𝑤𝑖s𝑖 (1)

where 𝒮 = {s1, s2, ..., s𝑁} is the set of environment-dependent
mean supervectors, 𝑤𝑖 is the weight of s𝑖, and s𝑖 is obtained by con-
catenating the mean vectors of the 𝑖𝑡ℎ acoustic model. Each super-
vector has 𝑀𝐷 dimensions where 𝑀 is the number of mixtures in
each acoustic model and 𝐷 is the dimension of feature vectors. The
adapted mean supervector s′ is used to construct the mean vectors of
the adapted model.
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2.2. Maximum Likelihood Estimation of Weights

The combination weights in (1) can be found by maximizing the
likelihood of the test utterance on the adapted acoustic model:

ŵ = argmax
w

log𝑝(X∣s′, 𝜆,ℒX) (2)

where w = [𝑤1, ..., 𝑤𝑁 ]𝑇 is the weight vector, X and ℒX are the
observation feature vectors and transcriptions of the current test ut-
terance, respectively, and 𝜆 denotes acoustic model parameters other
than mean vectors. In unsupervised adaptation, ℒX can be obtained
by a first pass decoding using an initial acoustic model.

Expectation-maximization (EM) algorithm is used to find the
solution of w iteratively. The auxiliary function is defined as

𝑄(w; w̄) = −1

2

∑
𝑚,𝑡

𝛾𝑚(𝑡)(x𝑡 − 𝜇𝑚)TΣ−1
𝑚 (x𝑡 − 𝜇𝑚) (3)

where w̄ is the previous weight estimate, x𝑡 is the feature vector of
frame 𝑡, and 𝛾𝑚(𝑡) is the posterior of the 𝑚𝑡ℎ mixture at frame 𝑡
given w̄, X, and ℒX. 𝑇 is the number of frames in X, and 𝜇𝑚 and
Σ𝑚 are the mean and diagonal covariance matrix of mixture 𝑚 in
the adapted model. Terms not related to w are not included in (3).

The mean 𝜇𝑚 is represented as 𝜇𝑚 =
∑𝑁

𝑖=1 𝑤𝑖s𝑖,𝑚 = S𝑚w,
where s𝑖,𝑚 is the subvector for mixture 𝑚 in supervector s𝑖 and
S𝑚 = [s1,𝑚, ..., s𝑁,𝑚] is a 𝐷 × 𝑁 matrix. After maximizing the
auxiliary function, the solution of w is

ŵ =

[∑
𝑚,𝑡

𝛾𝑚(𝑡)S𝑇
𝑚Σ−1

𝑀 S𝑚

]−1 ∑
𝑚,𝑡

𝛾𝑚(𝑡)S𝑇
𝑚Σ−1

𝑀 x𝑡 (4)

Note that (4) has the same form as the solution in cluster adaptive
training (CAT) [8] and eigenvoice [6] except that in eigenvoice the
regressors are a set of basis supervectors obtained from the mean
supervectors through principal component analysis (PCA).

2.3. Lasso Estimation of Weights

Lasso [7] imposes an 𝐿1 regularization term on linear regression
problems. Due to the 𝐿1 term, some of the weights will shrink to
exactly zero. This property may be desirable in mean combination
as it may exclude those mean supervectors not related to the current
test environment. In this way, the adapted model may fit better to the
test environment as there is less noise in mean combination.

With 𝐿1 regularization, the auxiliary function in (3) becomes

𝑄(w; ŵ) = −1

2

∑
𝑚,𝑡

𝛾𝑚(𝑡)(x𝑡 − S𝑚w)𝑇Σ−1
𝑚 (x𝑡 − S𝑚w)

−𝑇𝛼

𝑁∑
𝑖=1

∣𝑤𝑖∣ (5)

where 𝛼 is a tuning parameter that controls the weight of the 𝐿1

constraint and ∣𝑤𝑖∣ denotes the absolute value of 𝑤𝑖. As different
test utterances have different number of frames 𝑇 and the first term
in (5) is summed over 𝑇 , we also multiply the Lasso regularization
term with 𝑇 such that the same 𝛼 produces similar degree of weight
shrinkage for utterances of different lengths.

Due to the 𝐿1 constraint, it is difficult to maximize (5) directly
w.r.t. all the weights. Instead, we optimize the weights one by one
iteratively. Let’s define

w−𝑖 = [𝑤1, 𝑤2, ..., 𝑤𝑖−1, 0, 𝑤𝑖+1, ..., 𝑤𝑁 ]𝑇 (6)

z𝑖𝑡 = x𝑡 − S𝑚w−𝑖 (7)

where w−𝑖 is the weight vector with the 𝑖𝑡ℎ element reset to 0. Then
we maximize (5) w.r.t. to 𝑤𝑖 and treat other weights as constants

𝑤𝑖 = argmax
𝑤𝑖

{
− 1

2

∑
𝑚,𝑡

𝛾𝑚(𝑡)(z𝑖𝑡 − 𝑤𝑖s𝑖,𝑚)𝑇Σ−1
𝑚

(z𝑖𝑡 − 𝑤𝑖s𝑖,𝑚)− 𝑇𝛼∣𝑤𝑖∣
}

(8)

Take the derivative w.r.t. 𝑤𝑖 and make it equal to 0, we get:

0 =
∑
𝑚,𝑡

𝛾𝑚(𝑡)s𝑇𝑖,𝑚Σ−1
𝑚 (z𝑖𝑡 − 𝑤𝑖s𝑖,𝑚)− 𝑇𝛼sign(𝑤𝑖)

= 𝑐− 𝑑𝑤𝑖 − 𝑇𝛼sign(𝑤𝑖) (9)

where sign(𝑤𝑖) returns the sign of 𝑤𝑖 and

𝑐 =
∑
𝑚,𝑡

𝛾𝑚(𝑡)s𝑇𝑖,𝑚Σ−1
𝑚 z𝑖𝑡

=
∑
𝑚

s𝑇𝑖,𝑚Σ−1
𝑚 (x𝑚 − 𝛾𝑚S𝑚w−𝑖) (10)

𝑑 =
∑
𝑚

𝛾𝑚s𝑇𝑖,𝑚Σ−1
𝑚 s𝑖,𝑚 (11)

where 𝛾𝑚 =
∑

𝑡 𝛾𝑚(𝑡) and x𝑚 =
∑

𝑡 𝛾𝑚(𝑡)x𝑡. The final solution
for 𝑤𝑖 is then [9]

𝑤𝑖 =
(∣∣∣ 𝑐

𝑑

∣∣∣− 𝑇𝛼

𝑑

)
+

sign
( 𝑐

𝑑

)
(12)

where (𝑥)+ = max(𝑥, 0).
The weights are initialized as the ML estimate in (4). Then the

weights are re-estimated by using the Lasso estimation in (12) one
by one. After all the weights are optimized by Lasso, the transcrip-
tion of the test utterance is updated and the optimization process is
repeated. In this study, we only run 2 iterations of Lasso estimation
for each utterance as most of the improvement is obtained within
2 iterations. Due to the shrinking nature of Lasso estimation, the
weights turn to be scaled toward 0. This problem is solved by sim-
ply renormalizing the weights’ sum to 1 after Lasso estimation.

3. EXPERIMENTS

3.1. Experimental Settings

The proposed Lasso mean combination is evaluated on the Aurora-2
benchmark task [10]. A baseline system is trained using the stan-
dard multi-condition training scheme with standard simple back-end
configuration. The training data includes 17 environment condi-
tions, including clean condition and 4 noise types with each noise
type further divided into 4 SNR levels, i.e. 20dB, 15dB, 10dB, and
5dB. In addition, each of the 17 conditions is further divided into
male and female parts, hence the training data is divided into 34 ho-
mogenous sets. The baseline acoustic model is adapted to the 34
homogenous sets by using maximum likelihood linear regression
(MLLR) mean transforms [3] to generate environment-dependent
models, from which 34 mean supervectors are extracted to form the
mean supervector set 𝒮 . We experiment with two sets of supervec-
tors, one set is obtained using global MLLR transforms and the other
is obtained using regression class-based MLLR transforms (4 trans-
forms per condition). In all model combination experiments, the
initial transcription of a test utterance is obtained by a first pass de-
coding using the baseline model.

The features are 39 MFCCs defined by the Aurora-2 task, and
c0 is used instead of log energy. All features are normalized by
utterance-dependent mean and variance normalization (MVN).
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Fig. 1: Illustration of weight shrinkage in Lasso mean combina-
tion using utterance “MAH O789A” (male speaker, subway noise,
SNR=15dB). There are 34 lines in the figure, each representing the
weight evolution of one mean supervector with increasing 𝛼. The
bold line shows the weight of the correct mean supervector.

3.2. Investigation of Weights

Let’s first investigate the shrinkage of the weights in Lasso estima-
tion. Fig. 1 shows the evolution of weights for one test utterance
using the supervectors obtained with global MLLR transforms. Note
that the environment condition of the utterance matches exactly one
of the training conditions. The tuning parameter 𝛼 starts from 0
and gradually increases to 0.5, the larger the 𝛼, the stronger the 𝐿1

constraint. From the figure, it is observed when 𝛼 = 0 (equiva-
lent to ML estimate), all the weights are non-zero. As 𝛼 increases,
the weights generally shrink towards zero due to the 𝐿1 constraint.
However, the weight of the mean supervector that corresponds to the
true environment and gender of the test utterance (shown in bold in
the figure) does not shrink significantly. After the weights become
stable at high 𝛼, the correct mean supervector has a large weight,
while most other mean supervectors have zero weights. In addi-
tion, our investigation shows that those supervectors with non-zero
weights are usually related to the true environment. This shows that
the 𝐿1 constraint helps to choose the correct mean supervector.

Next, let’s investigate the weights for two environment condi-
tions, clean and 5dB car noise, both included in the training condi-
tions. In the clean test condition as shown in Fig. 2(a), the first 500
utterances are spoken by male speakers and the second 501 utter-
ances by female speakers. Each row of the weight matrices corre-
sponds to one test utterance and contains 34 weights of mean super-
vectors . The weights in the left half of each row are for the super-
vectors of female speakers and those in the second half are for male
speakers. In each gender category, the 17 weights are further divided
into 5 categories (marked by the black vertical lines), i.e. clean (c),
subway noise (sby), babble noise (bbl), car noise (car), and exhibi-
tion noise (exh). Furthermore, in each noisy category, there are four
weights corresponding to (from left to right) 20dB, 15dB, 10dB, and
5dB. By examining the weights in Fig. 2(a), it is observed that while
the weights obtained by ML are quite random, the weights obtained
by Lasso are sparse and consistent with the true environment con-
ditions most of the time. Specifically, the Lasso weights of the first
500 utterances (from male speakers) usually have large positive val-
ues for the supervector “c” in the center of the figure (corresponding
to male clean supervector). Similar observation is also true for the
second half of the utterances. Fig. 2(b) shows the same type of in-
vestigation for 5dB car noise test condition. It is observed that the
ML weights are again quite random, and the Lasso weights concen-
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Fig. 2: Comparison of weights obtained by ML and Lasso. In each
sub-figure, the x-axis represents environment conditions, while the
y-axis is the test utterance index.

trate around the true supervectors. The investigation of clean and
5dB car noise test conditions shows that the Lasso estimation selects
better mean supervectors than the ML estimation for target model
construction when the test condition is exactly the same as one of
the training conditions.

When the test condition does not match any of the training con-
dition, both ML and Lasso estimation will combine supervectors of
multiple conditions to predict the target supervector. However, the
weights using Lasso estimation are much more sparse than the ML
weights. We will examine whether the sparseness in the weight vec-
tor is good for robust speech recognition in the next section.

3.3. Experimental Results and Discussions

We first investigate the effect of 𝛼 on speech recognition perfor-
mance. Fig. 3 shows the average word accuracy obtained by Lasso
mean combination with different 𝛼. Note that 𝛼 = 0 corresponds to
the pure ML estimation. The figure shows that the recognition accu-
racy is quite stable around 𝛼 = 0.2. Hence, we will use 𝛼 = 0.2 for
the rest of the paper. At 𝛼 = 0.2, about 65% to 80% of the weights
on average are exactly zero.

Table 1 shows the results obtained by ML and Lasso mean com-
bination in test set A. The baseline refers to the results of standard
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Fig. 3: Word accuracy obtained with Lasso mean combination with
different 𝛼 averaged over from 0dB to 20dB and all noise types. The
supervector set is obtained with global MLLR transforms.

Table 1: Recognition accuracy averaged over test set A. Oracle uses
correct mean supervectors in testing. Oracle, ML, and Lasso use the
supervector set generated by global MLLR mean transforms, while
Oracle4, ML4, and Lasso4 use the supervector set from 4 class-based
transforms. Avg. denotes results averaged from 20dB to 0dB.

SNR Clean 20dB 15dB 10dB 5dB 0dB -5dB Avg.

Baseline 98.3 98.5 97.6 96.1 90.6 73.6 39.4 91.3

Oracle 98.4 98.7 98.0 96.5 91.2 75.5 41.7 92.0

ML 98.4 98.7 97.9 96.5 91.2 74.4 36.4 91.7

Lasso 98.4 98.7 98.0 96.5 91.6 75.9 40.5 92.1

Oracle4 98.8 98.8 98.3 96.9 91.8 77.1 43.5 92.6

ML4 98.5 98.7 98.0 96.6 91.2 75.1 36.4 91.9

Lasso4 98.7 98.8 98.1 96.7 92.0 76.4 41.1 92.4

multi-condition training scheme. As the environment conditions in
test set A is the same as those in the training data, there is one true
mean supervector for each test condition. We use the true supervec-
tor to generate a model for each test utterance and call the obtained
results “Oracle” results. For -5dB and 0dB where there is no true
supervector, 5dB supervectors are used. From Table 1, we have two
major observations. First, both ML and Lasso produce better results
than the baseline. Second, Lasso outperforms ML and achieves sim-
ilar performance as the “Oracle” results. These results show that the
accurate supervector selection by Lasso as shown in Fig. 2 helps to
improve the robustness of the adapted model.

Table 2 shows the performance of mean combination on test set
B where the test environment conditions are not observed during
training. This time there is no “Oracle” result. From the table, it
is observed that Lasso still produces better overall performance than
ML. This shows that the sparseness in the weight vectors obtained
by Lasso is beneficial for robust speech recognition even when the
test condition is not seen during training. Finally, the performance
of Lasso and ML averaged over all test cases are shown in Table 3.
The results show that the Lasso mean combination performs better
than the ML mean combination in almost all SNR levels.

4. CONCLUSIONS

In this paper, we adapt the acoustic model towards test environment
condition by linearly combining multiple pre-trained environment-
dependent models. As the proposed Lasso mean combination with
𝐿1 regularization shrinks the weights of unrelated mean supervec-
tors to exactly zero, a better combined acoustic model could be ob-
tained. Experimental results on Aurora-2 task verified the advan-

Table 2: Recognition accuracy averaged over test set B.

SNR Clean 20dB 15dB 10dB 5dB 0dB -5dB Avg.

Baseline 98.3 98.6 97.8 96.2 90.5 73.7 38.6 91.4

ML 98.4 98.7 98.0 96.5 90.8 73.1 35.6 91.4

Lasso 98.4 98.7 98.0 96.5 91.1 74.3 39.2 91.7

ML4 98.5 98.7 98.0 96.6 91.0 73.6 36.1 91.6

Lasso4 98.7 98.8 98.1 96.7 91.2 74.6 39.5 91.9

Table 3: Recognition accuracy averaged over test sets A, B, and C.

SNR Clean 20dB 15dB 10dB 5dB 0dB -5dB Avg.

Baseline 98.3 98.5 97.6 96.0 90.4 73.5 38.9 91.2

ML 98.5 98.6 97.9 96.3 90.9 73.6 35.9 91.5

Lasso 98.5 98.7 98.0 96.4 91.3 75.0 39.6 91.9

ML4 98.5 98.7 98.0 96.4 91.0 74.2 36.2 91.7

Lasso4 98.7 98.8 98.1 96.6 91.5 75.4 40.2 92.1

tage of the Lasso mean combination over the conventional ML mean
combination. For test conditions that are observed in the training
data, Lasso mean combination produces similar results as that ob-
tained using true the mean supervectors. For all test conditions,
Lasso mean combination outperforms the ML mean combination.
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