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ABSTRACT

We present the Factorial Hidden Restricted Boltzmann
Machine (FHRBM) for robust speech recognition. Speech
and noise are modeled as independent RBMs, and the in-
teraction between them is explicitly modeled to capture how
speech and noise combine to generate observed noisy speech
features. In contrast with RBMs, where the bottom layer of
random variables is observed, inference in the FHRBM is in-
tractable, scaling exponentially with the number of hidden
units. We introduce variational algorithms for efficient ap-
proximate inference that scale linearly with the number of
hidden units. Compared to traditional factorial models of
noisy speech, which are based on GMMs, the FHRBM has the
advantage that the representations of both speech and noise
are highly distributed, allowing the model to learn a parts-
based representation of noisy speech data that can generalize
better to previously unseen noise compositions. Preliminary
results suggest that the approach is promising.

Index Terms— Robust Speech Recognition, Source Sep-
aration, Deep Belief Networks, Restricted Boltzmann Ma-
chines, Variational Methods.

1. INTRODUCTION

Restricted Boltzmann machines (RBMs) have recently been
applied to several well established problems in machine learn-
ing and signal processing, with great success. In Automatic
Speech Recognition (ASR), Deep Belief Networks (DBNs) of
RBMs have been applied to large vocabulary speech recog-
nition (LVCSR) and phone recognition, outperforming (or
improving) systems that utilize the de facto Gaussian Mix-
ture Model (GMM) of speech acoustics. DBNs of RBMs
represent phenomena using a distributed state representation,
which has extraordinary modeling power, but yet facilitates
efficient inference. As such, RBMs 1 are a general tool for
modeling, and can extract and represent highly non-linear
and complex phenomena. However, when the relationships
between real-world variables are well understood, this knowl-
edge can and should be leveraged.

1RBMs will be used to refer to DBNs of RBMs often from this point
forward, for simplicity.

Model-based approaches to robust ASR that utilize ex-
plicit models of noise, channel distortion, and their interaction
with speech are a well established and continually evolving
research paradigm in robust ASR. Many interesting and ef-
fective approximate modeling and inference techniques have
been developed to represent these acoustic entities, and the
reasonably well understood but complicated interactions be-
tween them [1, 2, 3, 4]. In this paper, we consider the use
of RBMs as models of (clean) speech and noise, and their
integration with explicit models of how speech and noise in-
teract to define Factorial Hidden Restricted Boltzmann Ma-
chines (FHRBMs) for robust speech recognition.

2. RESTRICTED BOLTZMANN MACHINES

An RBM is a Markov Random Field (MRF) with one layer of
hidden random variables h, and one layer of visible random
variables v [5, 6]. RBMs are distinguished by the characteris-
tic that the hidden variables are not connected to one another.
An RBM with Gaussian visible variables and Bernoulli hid-
den variables has log probability:

log p(v,h) = −
V∑

i=1

(vi − bi)
2

2σ2
i

+

H∑

j=1

ajhj +

V∑

i=1

H∑

j=1

ωijvihj − Z (1)

where V andH are the number of visible and hidden random
variables, respectively. Here Z is a normalization constant
(the log partition function), and bi, σ2

i , wij , and aj ∀i, j are
the parameters of the model.

The posterior probability that a given hidden unit is on is:

p(hj = 1|v) =

∑
h �=hj

exp(log p(v,h))
∑

h
exp(log p(v,h))

= sig(aj +

V∑

i=1

ωijvi) (2)

where sig(x) = 1
1+exp(−x) . This corresponds to the activity

of a node in a feed-forward neural net.
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The conditional probability of vi is:

p(vi|h) =
exp(−(vi−bi)

2
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i

+
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j=1 ωijvihj)
∫
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exp(− (vi−bi)2

2σ2

i

+
∑H

j=1 ωijhj)
(3)

= N (vi; bi + σ2
i

H∑

j=1

ωijhj ;σ
2
i ), (4)

which reveals that p(v|h) is a diagonal covariance Gaussian,
with fixed covariance. Thus an RBM as defined above im-
plements a mixture of Gaussians representation of the data v,
and has hidden state h, which is the configuration of a col-
lection of binary random variables. This highly distributed
representation of the data implements a mixture of 2H diag-
onal covariance gaussians, but can be evaluated exactly given
v in time linear in the number of hidden units, H , due to its
factorial structure. This is clear from the form of the posterior
of h, which factors, as shown in (2).

3. FACTORIAL HIDDEN RBMS

We take a model-based approach to noise robust speech
recognition, and explicitly represent the probability distri-
bution function (PDF) of speech and noise with the RBMs
described above. In this model, both the noise features, vn,
and the speech features, vx, are unobserved, and must be
estimated based on observed mixed data y. The relationship
between the speech, noise, and mixture, is captured using an
interaction model, p(y|vx,vn).

Exact inference in FHRBMs scales exponentially with the
total number of hidden units in the factorial hidden RBM,
Hn + Hx, since the “visible” units of the speech and noise
RBMs are not actually observed, and the interaction model,
p(y|vx,vn), is generative. Complicating matters further is
the fact that the interaction model must typically be approx-
imated on a context-dependent basis to make inference ana-
lytically and computationally tractable. For example, the in-
teraction model (8) is highly non-linear, and so is generally
approximated uniquely for every combination of speech and
noise states. This issue we will return to shortly.

4. EFFICIENT INFERENCE USING VARIATIONAL
METHODS

For any given distribution q(h,v) over the hidden random
variables of the speech and noise RBMs (v = {vx,vn},h =
{hx,hn}), we can define the following lower-bound on the
log probability of the observed data y:

log p(y) = log
∑

h,v

p(hx,vx)p(hn,vn)p(y|vx,vn) (5)

≥
∑

h,v

q(h,v) log
p(hx,vx)p(hn,vn)p(y|v)

q(h,v)
(6)

= Eq(hx,vx)[log p(h
x,vx)] + Eq(hn,vn)[log p(h

n,vn)]

+Eq(vx,vn)[log p(y|v)] +Hq(h,v) ≡ L (7)

where Eq(x)[f(x)] denotes the expected value of f(x) w.r.t
the probability distribution q(x), and Hq(x) denotes the en-
tropy of q(x). If q(h,v) = p(h,v|y) the bound is tight, but
p(h,v|y), as discussed previously, is intractable to compute.
To make inference tractable, we factor the form of q, which
makes determining its parameters tractable.

4.1. Mean-field approximation using the log-sum model

We assume the following approximate interaction between
speech and noise in the log Mel power spectral domain [2]:

p(y|vx,vn) =
∏

f

N (yf ; g(vf ), ψ
2
f ), (8)

g(vf ) = log(exp(vxf ) + exp(vnf )) (9)

where vf = [vxf vnf ]
T , ψf models noise in the representa-

tion, which ignores phase interactions, and f is a frequency
subscript.

To make inference tractable, we assume a posterior distri-
bution q of the form:

q(hx,vx,hn,vn) =
∏

f

q(vxf , v
n
f )

Hx∏

j=1

q(hxj )

Hn∏

k=1

q(hnk )

=
∏

f

N (vf ;μf ,Φf )
∏

s=x,n

Hs∏

j=1

(γhs
j
)h

s
j (1− γhs

j
)1−hs

j (10)

where γhs
j
= q(hsj = 1), and ()h

s
j denotes exponentiation by

binary random variable hsj . In this work, we assume that Φf

is diagonal.
Substituting this parameterization of q into (6), and as-

suming p(y|vx,vn) as given in (8) (the log-sum approxima-
tion), we obtain a lower bound L, that can be optimized to
identify the parameters of q. Unfortunately L does not have
a simple form in these parameters. To overcome this, we ap-
proximate p(y|vx,vn) as follows:

p(y|vx,vn) ≈
∏

f

N (yf ; g(μf ) + (vf − μf )
T df , ψ

2
f ), (11)

where df = [dvx
f
dvn

f
]T = ∂g

∂vf

∣∣∣
vf=μf

is defined based on

the current estimates of the speech and noise features (μf ).
Note that, in contrast with the approximations in [2, 3], which
compute a Gaussian estimate of the posterior distribution of
the speech and noise features for every combination of speech
and noise states, here we approximate this posterior as Gaus-
sian, since an FHRBM has 2Hx+Hn unique states. This makes
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the former approach intractable for models when the speech
or noise RBM has a significant number of hidden units.

Differentiating w.r.t. the variational parameters of q, and
also w.r.t. gf , we arrive at the following set of updates, which
may be iterated to maximize L̂, our approximation of the
lower bound L:

γhs
j
= sig(asj +

V s∑

f=1

ωs
fjμvs

f
) (12)

φ2vs
f
= (σ−2

vs
f
+ d2vs

f
(ψ′

f )
−2)−1 (13)

μvs
f
= φ2vs

f
(σ−2

vs
f
(bvs

f
+ σ2

vs
f
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fjγhs

j
) + dvs

f
(ψ′

f )
−2y′f ) (14)

dvs
f
= sig(μvs

f
− μvs̃

f
) (15)

where y′f = yf − g(μf ) − dvs̃
f
μvs̃

f
, (ψ′

f )
−2 = (ψ2

f +

d2
vs̃
f

σ2
vs̃
f

)−1, and s̃ = x when s = n, and n when s = x.

4.1.1. Extension to deep RBMs

An advantage of the mean-field approach to variational infer-
ence is that the algorithms can be extended to deep RBMs in a
straightforward manner. For example if an additional layer of
hidden variables, ls = {ls1, l

s
k, . . . , l

s
Ls}, is introduced, along

with a corresponding set of additional variational parameters,
q(ls) =

∏
k q(l

s
k) =

∏
k γlsk , it is straightforward to verify

that the update for the posterior estimate of a unit in first hid-
den layer is given by:

γhs
j
= sig(asj +

V s∑

i=1

ωs
ijμvs

i
+ αs

j +
Ls∑

j=1

�s
jkγlsk) (16)

where�s
jk is the weight between hidden units hsj and lsk, and

αs
j represents additional bias on hsj . The activation of hidden

unit hsj naturally depends on activation of units in the layers
immediately above and below. The current estimates of these
units under the approximate posterior q are used as surrogate
observations during mean-field inference.

5. EXPERIMENTS

5.1. Data, Acoustic Model, and Recognizer

Experiments were conducted on real data recorded to charac-
terize in-car recognition scenarios. The proprietary database
described in [7] was used for all experiments. Audio data is
US English in-car speech recorded in various noise conditions
(0, 30 and 60 mph), and sampled at 16kHz. The training set
is composed of 786 hours of speech, with 10k speakers for a
total of 800k utterances. The test set contains a total of 206k
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Fig. 1. Learned weight matrices for the bottom layer of one set
of clean speech/noise RBMs. The columns correspond to elemen-
tal feature vectors, which combine linearly to define the conditional
probability distribution of clean speech/noise features, given the cur-
rent posterior estimate of the hidden units directly above, as shown
in (3). Additional hidden layers encode additional constraints on the
activity of these feature vectors. The FHRBM combines these repre-
sentations using an interaction model, which describes how speech
and noise combine in the modeled feature domain (log Mel depicted)
to generate noisy speech.

words in 39k utterances from 128 held-out speakers. There
are 47 tasks covering four domains (navigation, command &
control, digits & dialing, radio) in 7 US regional accents.

Our reference acoustic model is a state-of-the-art quan-
tized [8] 10k Gaussian with 865 context-dependent (CD)
states. We use a set of 91 phonemes modeled by three-state
hidden Markov models (HMM). fMMI uses a secondary
acoustic model with 512 Gaussians, with an inner and outer
context of 17 and 9 frames, respectively.

5.2. Front-end models

All front-end acoustic models were trained on a small sub-
set of the training data. All speech models were trained on
400k frames of randomized speech from clean conditions
(≥25dB); the silence model is trained on 400k frames of
unsorted noise from the non-speech parts of utterances. The
speech/noise segmentation was based on a forced-alignment.
The FHRBMs for speech and noise are both deep RBMs
with two RBM layers inside, operating in a 24-dimensional
log Mel spectral domain. Their respective topologies are
24− 32− 8 and 24− 8− 3 (input− hidden− top) neurons.
Each RBM layer is fully connected; thus there are 1120 train-
able parameters for the speech RBM and 259 for the noise
RBM. Competitive band-quantized GMM models have simi-
lar sizes (∼272 and ∼5 states, respectively). In this setup, the
state of the front-end is reset at each utterance.

In this paper, the speech and noise RBMs were trained
independently via forced-alignments of speech and silence,
respectively, using contrastive divergence. Figure 1 depicts
learned feature layer weight matrices for clean speech and
noise RBM representations, respectively.
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5.3. Results

Table 1 depicts the Word Error Rate (WER) and Sentence
Error Rate (SER) performance of our embedded recognizer
as a function of system configuration and front-end system.
All results were obtained with an acoustic model built in a
discriminatively trained fMMI feature space. The four base-
line configurations (B1-B4) are defined based on their use (or
lack thereof) of commercial-grade spectral subtraction (SS)
and stochastic feature-spaceMaximum Likelihood Linear Re-
gression (fMLLR) during decoding. The Static Noise Model
(SNM), Dynamic Noise Adaptation (DNA), and DNA with
condition detection (DNA-CD) were initialized based on the
first 10 frames of each utterance, and utilize a band-quantized
(8 level) 272 component Gaussian for the speech model, and
a Gaussian model for noise [9]. The FHRBM results were
obtained with three layer speech (24-32-8) and noise (24-8-3)
RBMs, using the variational algorithm described in this pa-
per. During inference, the noise state posterior estimates from
the previous frame were used to initialize those of the current
frame in lieu of an explicit dynamical model of noise. Look-
ing at the results, we can see that the FHRBM system out-
performs the DNA system, presumably because it is utilizing
prior information, can better handle any non-stationary noise,
and can explain new combinations of noise that are encoun-
tered only at test time, due to its distributed state representa-
tion. However, the performance of the FHRBM is surpassed
by DNA-CD, which does online Bayesian model averaging
to shut off explicit noise modeling when it is not beneficial.
Nevertheless, these preliminary results with FHRBMs are re-
markable, considering that the FHRBM inference algorithm
used here maintains a single estimate of SNR per frequency
band during inference, whereas the other algorithms compute
an SNR estimate for every speech state. Moreover, for the
FHRBM system, only its state was initialized on the speech
free data at the beginning of each utterance. The other algo-
rithms, in contrast, adapted their parameters on speech-free
test data. Both CD and parameter adaptation could be applied
to enhance the performance of the FHRBM system.

6. DISCUSSION

The preliminary results presented in this paper are promis-
ing. However, several important experiments and research
directions remain. Network topology/size of the speech/noise
RBMs, more thorough comparisons against GMM-based
front-ends, and alternative, more accurate inference meth-
ods such as structured variational approaches still need to
be investigated. Re-training the back end recognizer on
FHRBM processed outputs or incorporating condition de-
tection [9] should further improve performance, as should
state-specific variance modeling, and adaptation of the pa-
rameters of the FHRBM during inference. FHRBMs seem
ideal for and need to be investigated in the context of more

Algorithm WER/SER (%)
fMMI (B1) 1.34/3.77
B1 + SNM 1.70/5.06
B1 + DNA 1.27/4.04
B1 + FHRBM 1.20/3.51
B1 + DNA-CD 1.09/3.19
fMMI+SS (B2) 1.18/3.41
B2 + SNM 1.76/5.27
B2 + DNA 1.34/4.24
B2 + FHRBM 1.18/3.48
B2 + DNA-CD 1.10/3.17
fMMI+fMLLR (B3) 1.08/3.00
B3 + SNM 1.25/3.59
B3 + DNA 1.06/3.04
B3 + FHRBM 1.03/2.95
B3 + DNA-CD 0.93/2.59
fMMI+fMLLR+SS (B4) 1.00/2.79
B4 + SNM 1.26/3.56
B4 + DNA 1.02/3.03
B4 + FHRBM 0.99/2.82
B4 + DNA-CD 0.95/2.67

Table 1. Word Error Rates and Sentence Error Rates of our embed-
ded recognizer as a function of system configuration and front-end
system. All results were obtained using an acoustic model trained
in a discriminatively trained fMMI feature space. Please refer to the
text for a full description of the algorithms and results.

structured/non-stationary background noise robustness. Ulti-
mately, FHRBMs should be jointly trained, and directly used
by the decoder as an acoustic model.
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