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ABSTRACT

Acoustic event detection systems supporting heterogeneous sets of
events face the problem of having to characterize them when they
have different acoustic properties (transient, stationary, both, etc.),
observing this fact even within the acoustic event itself. Moreover,
managing large feature vectors with features characterizing differ-
ent properties of the signal is always difficult. This paper introduces
the usage of spectro-temporal fluctuation features in a tandem con-
nectionist approach, modified to generate posterior features sepa-
rately for each fluctuation scale and then combine the streams to be
fed to a classic GMM-HMM model. The experiments explore scale
and event wise performance, as well as different stream combina-
tion methods, and show that the proposed method outperforms the
GMM-HMM baseline as well as recent proposals in the CHIL 2007
evaluation campaign’s related acoustic event detection tasks.

Index Terms— acoustic event detection, spectro-temporal fluc-
tuation features, multi-stream combination, tandem connectionist

1. INTRODUCTION

Although most research in acoustic scene analysis has focused on
speech, there are many other types of sounds, such as steps, door
knocks, sneezes, breath, etc., that can provide valuable information
in many applications, online and offline. The discovery and analy-
sis of those sounds is referred to as acoustic event detection (AED).
Its applications include audio recordings segmentation and surveil-
lance, aliveness detection in elder care or automatic classification of
social activities and contexts. A straightforward application of on-
line AED would be systems that trigger other actions upon detect-
ing a specific event such as notifying medical emergency services if
breath cannot be detected anymore, or opening the door when some-
body knocks, but also one can think of AED as previous stage to
improve speech recognition systems by integrating this complemen-
tary information into adaptive noise reduction or feature enhance-
ment systems. Furthermore, at the off-line side of AED there are
many automated statistical applications that can improve our lives:
e.g. counting the times one coughs or sneezes everyday, in combi-
nation with diseases diagnostics data, the relationship between both
could be learned improving future diagnosis, among others.

Current most salient works in AED reflect the aim to bring
most successful technologies of speech recognition to the field.
Recently, CHIL evaluation framework 2007 [1] and its AED task
has put effort to provide a common evaluation framework. In that
evaluation campaign [2] achieved one of the best performances,
using Adaboost-based feature selection with the Kullback-Leibler
distance to measure the discriminant capability of each feature for
each acoustic event and Hidden Markov Models (HMM). More re-
cently, [3] present a two stage proposal: tandem connectionist stage,

combining sequence modeling advantages with discriminative capa-
bilities of Multi-Layered Perceptron (MLP) trained posteriors, and a
re-scoring stage, in which similarly to speaker identification, boosts
classification performance by adapting a Universal Background
Model (UBM) Gaussian Mixture Model (GMM) to each class as
the input to a Support Vector Machine (SVM) classifier providing
confidence scores to each of the detected segments.

However, although these approaches include automated feature
selection steps, little work has been done on including new features
that would fit the targeted acoustic events. Another problem is that
up to date no one from the AED field has explored different ways
to integrate features characterizing different properties of the sig-
nal. More specifically, acoustic events have very different properties
and it is reasonable to assume that the same set of features will not
perform equally well in all cases — e.g. some events are more tran-
sient, some more stationary, some, like music, have components of
both kinds. Therefore, there is a need to find features that would fit
better the different kinds of acoustic events, and a way to integrate
them in a consistent manner.

In this way, in [4] we introduced the usage of speech-specific
spectral fluctuation filters [5] in place to obtain noise-wise robust
performance of voice activity detection systems. In that case, the
spectro-temporal parameters were set so that the resulting signal was
to fit that of speech. Here, we propose the usage of spectral fluc-
tuation related features characterizing the different sets of acoustic
events such as the ones that are more transient, the ones that are
more stationary, etc. In this paper we refer to these as fluctuation
scales. Such a decomposition unfolds mixed information from the
signal, generating a significantly large feature vector. That is the
reason why we need to integrate that in a proper way so that we
can take advantage of each of the decomposed components. Tandem
connectionist models [6] combine the advantages of discriminative
and generative models. In this work, we use multi-stream tandem
modeling to achieve a discrminatively weighted integration of fea-
tures from different fluctuation scales. For this purpose, we propose
replacing traditional early integration scheme with a late integration
scheme, previously proposed in [7] for integration of discriminative
and generative evidence models. This is done by placing a group of
posterior estimators (one for each of the fluctuation scale features),
instead of a single one, and introducing a multi-stream integration
step to integrate those posteriors, dealing better with a model that
has features characterizing different properties.

The outline of this paper is as follows: Section 2 describes the
spectral fluctuation related acoustic features included in the model
and posterior features modeling, Section 3 summarizes the proposed
stream integration and full models, Section 4 contains the evaluation
experiments we performed and discusses the results, concluding the
work in Section 5.
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2. FEATURE EXTRACTION

2.1. Acoustic features to characterize acoustic events
Sounds found in an acoustic scene can be characterized at many
domains: energy, spectrum, temporal variation of the spectrum,
etcetera. However, such properties of speech fail to differentiate
between events since even in spectrum-domain, noise and other
acoustic components are mixed in the same signal. Two-stage
Harmonic Percussive Sound Separation (HPSS) [5] enables to de-
compose a signal spectrum by its spectro-temporal smoothness, that
is, by differentiating sounds by its smoothness in time and smooth-
ness in spectrum at the same time, and it is based in the algorithm
by the same name HPSS introduced in [8]. As it can be observed
in Fig. 1, the HPSS algorithm is able to characterize mixed signals
by their temporal and spectrum smoothness (represented in the hor-
izontal and vertical axes of the graphs, respectively). Although this
algorithm was originally used in music processing, the harmonic
and percussive components obtained after the decomposition can
be generalized as the components smooth-in-time and smooth-in-
frequency, respectively. Further explanations on how the algorithm
achieves the decomposition in an expectations-maximization fash-
ion, can be found in [8].

The decomposition is parameterized by defining the Short-Time
Fourier Transform (STFT) analysis window width which has a trade-
off between its width in time and frequency. Two-stage HPSS takes
this decomposition property to extract the parts from the signal that
fluctuate in a desired manner (i.e. separates from the signal the com-
ponents that do not fluctuate as desired), by applying the HPSS al-
gorithm twice to filter with upper and lower smoothness boundaries.
Such property was used in [4], and here the same approach is ap-
plied but this time taking into account also the rejected components
during the two stages, given they are more prone to characterize sig-
nals that are transient, or prominently stationary better than a raw
spectrum. As a result we obtain three spectrograms: one containing
components rather stationary (H-component), a second containing
more transient components (P-component), and a third containing
the intermediate part (V-component) that has been previously used
in voice activity detection research [4]. These three spectrograms,
together with the original are the four fluctuation scales we refer to
when we talk about stream combination, and they have been char-
acterized by extracting their Mel-Frequency Cepstrum Coefficients
(MFCC), together with their first and second derivatives, as acoustic
features.

2.2. Posterior features
Following the tandem connectionist approach proposed for speech
recognition in [6], much discussion has arisen mostly focused on
justifying the advantages and disadvantages of such an approach. In
this way, the core of the tandem connectionist approach is the usage
of the posteriors probabilities (for each phone in the case of speech
recognition) as features, namely posterior features, to be fed to a gen-
erative model such as a conventional GMM-HMM instead of using
the acoustic features themselves. However, although several ways of
obtaining those posterior features have been proposed, discrimina-
tively trained neural networks such as MLP have provided the best
results so far. Looking deeper, the combination of the discriminative
(MLP) and generative (GMM) models provides: first, enhancement
of the variation and minimize irrelevant detail in feature space due to
the fact that MLPs modeling focuses on small patches on the bound-
aries between acoustic events, magnifying the boundary spaces; and
second, combines this with a pseudo language model provided by
the GMM-HMM. This is, it allows modeling of the feature stream as
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Fig. 1. Two-stage HPSS components location scheme in a spectro-
temporal smoothness representation: H-component for stationary
signals, P-component for transient signals, and V-component for the
intermediate component.
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Fig. 2. Example of the posteriors of each event (P (Xt|qt =[event]))
obtained from a sample recording session using the trained MLPs.

a sequence, which is similar to some extent to how languages pro-
vide a priori information.

An example of posterior features can be observed in Fig. 2. It
depicts how MLP posterior provide very clear information in some
cases such as the applause posterior, and also noisy posteriors as
it can be seen in the posterior for chair moving. Here, the aim of
using these posteriors as features for a likelihood-based model is to
leverage also information from other posteriors and combine them.

3. MULTI-STREAM COMBINATION

Traditionally, combining feature streams characterizing different
properties of the signal is performed by using a large feature vector
or by applying some dimensionality reduction techniques such as
Principal Component Analysis (PCA). Here we propose the integra-
tion of the stream combination in the tandem connectionist model
by modifying the posterior features stage into a set of hierarchical
MLPs grouped by features of the same fluctuation scale, and then
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Fig. 3. Integration schemes for combining multiple domain features:
(a) Early integration, and (b) Late integration.

combine the resulting posteriors streams by acoustic event. This
integration schemes are based on the concepts introduced in [7]
by taking the early and later integration models to compare their
performance, but used here to combine different acoustic natures.
The two models are described in Fig. 3.

Early integration Fig. 3 (a) refers to the common approach in
tandem connectionist architectures. In this combinations scheme
the acoustic features are concatenated no matter what signal prop-
erty they belong to they are from, and fed to a MLP to estimate
the posteriors (ft) which are ultimately used as features to classi-
fier likelihood estimation, and path decoding (GMM-HMM in this
case). On the other side, late integration refers to the integration of
the property grouped features once the posteriors have been obtained
by means of a set of hierarchical posterior estimators (e.g. MLPs).
These are integrated later on using sum, weighted sum, product, or
even PCA, to integrate the posterior feature, that will be again fed
to a GMM-HMM model. The full model flow is shown in Fig. 3
(b), and is a modified version of the traditional tandem connectionist
approach in which the knowledge of the signal property character-
ized by each feature is used to group features, and obtain multiple

posteriors (f
(i)
t ) that are later on combined into (f∗

t ).

Having extensive literature in stream combination, here we have
investigated the usage of sum [9, 10], and PCA, to evaluate and com-
pare their performances in late integration. The performance of early
integration has also been tested for comparison purposes, as well as
traditional GMM-HMM.

4. ACOUSTIC EVENTS RECOGNIZER EVALUATION

This section describes a first experiment consisting in AED in sce-
narios where acoustic events happens without overlapping with other
acoustic events. The target of this experiment is to analyze in detail
the behavior of each of the proposed features, as well as different
stream integrations models, and discuss their advantages.

The task consisted in performing AED in acoustic scenes with
isolated acoustic event, i.e. only overlapped with the environmen-
tal noise. The recordings belong to the FBK-irst AED development
set contained in CHIL evaluation framework 2007 [1] (and are also
publicly available through ELRA repository1) and the description of
the room can be found in the referred paper. The acoustic events
included are: knock on a door or table (kn); door slam, on open or

1http://catalog.elra.info/product info.php?products id=1093

Table 1. AED-accuracy for each of the models in isolated AED
Model AED-ACC
GMM-HMM 18.60%
MLP-GMM-HMM (early) 26.32%
MLP-GMM-HMM (late-PCA) 20.31%
MLP-GMM-HMM (late-sum) 49.73%

close (ds); steps (st); chair moving (cm), spoon clings or cup jin-
gle (cl); paper wrapping (pw); key jingle (kj); keyboard typing (kt);
phone ringing/music (pr); applause (ap); cough (co); laugh (la); and
unknown (no). Although the dataset features recordings from sev-
eral distant microphone arrays, and microphones on the table. In
this experiment we used one of the microphones on the table as only
acoustic input. From the dataset we took 6 sessions of the 9 available
to train the MLPs, and the posterior features GMMs, and the rest (3
sessions) for the tests.

The data was down-sampled from its original 44.1 kHz sam-
pling rate to 16 kHz, and MFCCs (12 coefficients and energy) were
extracted from the 3 resulting components of the two-stage HPSS,
and from the original signal, together with their first and second
derivatives. Resulting into a total of 156 dimensions feature vec-
tor (4×13×3) in the case of early integration scheme, and 4 sets of
39 dimensions features vectors in the case of late integration. MLPs
have been trained and developed using QuickNet2 which provides
efficient tools to manage MLPs. In this experiments MLPs input in-
cluded a context of 9 frames (4 frames around the current frame) to
model the trajectory of the features as well. The MLP in the early
integration MLP-HMM model has way more inputs than the MLPs
in the later integration case. Therefore, to ensure a fairness in the
comparison, the early integration MLP (512 nodes) has more nodes
in the hidden layer than the MLPs (128 nodes) in the late integration
scheme, however, it is difficult to say how far this is affecting the
performance.

As defined in CHIL 2007 evaluation framework, we consider
an acoustic event has been correctly detected when either the cen-
tral frame of the detected event period falls within the event in the
groundtruth reference, or when the central frame of an event in the
groundtruth falls within a detected event. This is because, unlike in
speech detection where we require the full speech utterance to per-
form later processing such as speech recognition, AED systems treat
events as timestamps (e.g. the target is to know if somebody knocked
on the door or not, or count the number time one sneezes, etcetera).
With this we evaluate the performance of the experiments at 2 lev-
els: frame-wise, by obtaining the confusion matrix between acoustic
events, and the hit rate of each of them; and segment-wise, where we
use the AED-accuracy measure [1] which accounts for the harmonic
mean between precision and recall, these being the fraction of the
detected acoustic events that are in the reference and the fraction of
the reference acoustic events that have been detected.

For the sake of performance comparison between multi-stream
combination options, 3 different models have been tested:

• GMM-HMM: a traditional GMM-HMM ergodic model in-
cluding a garbage state.

• MLP-GMM-HMM (early): tandem connectionist model with
early integration of different fluctuation scale features and
posterior features obtained from the MLP.

• MLP-GMM-HMM (late): tandem connectionist model with
late integration (ranging within sum, product) of the posterior
obtained with MLPs.

2http://www.icsi.berkeley.edu/Speech/qn.html
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Table 2. Confusion matrix for isolated AED: percentage between the detected events and the groundtruth events.
Groundtruth Detected event

ap cl cm co ds kj kn kt la pr pw st
applause (ap) 22.5% 3.2% 1.6% 6.4% 0.0% 25.8% 0.0% 3.2% 0.0% 0.0% 35.4% 1.6%

spoon cling (cl) 0.0% 36.0% 3.1% 0.4% 0.0% 22.1% 0.4% 29.9% 2.1% 2.5% 0.4% 2.7%
chair moving (cm) 0.0% 21.7% 39.6% 2.7% 8.1% 1.9% 1.0% 3.2% 2.1% 5.4% 2.7% 30.7%

cough (co) 1.3% 12.1% 18.7% 34.5% 8.5% 5.5% 0.0% 3.2% 1.9% 8.5% 3.2% 1.9%
door slam (ds) 0.0% 0.5% 20.5% 1.7% 49.4% 5.8% 1.1% 0.5% 0.0% 0.0% 0.5% 24.7%
key jingle (kj) 0.3% 16.6% 7.3% 1.5% 0.0% 34.0% 1.7% 17.7% 0.0% 6.4% 11.5% 2.5%

knock (kn) 0.0% 0.0% 5.9% 0.0% 1.7% 4.2% 53.8% 1.7% 4.2% 9.4% 0.0% 18.8%
keyboard typing (kt) 0.0% 12.4% 1.9% 0.0% 0.6% 26.1% 0.6% 41.4% 0.3% 2.4% 6.2% 7.6%

laugh (la) 0.0% 8.9% 16.7% 6.6% 6.2% 3.7% 2.9% 4.8% 23.7% 19.7% 0.7% 9.2%
phone/music (pr) 0.0% 19.0% 8.8% 3.7% 1.1% 2.3% 1.3% 9.0% 2.7% 46.7% 0.9% 3.9%

paper wrapping (pw) 0.8% 4.8% 6.0% 0.0% 0.0% 23.6% 0.0% 21.6% 0.4% 3.2% 38.0% 1.6%
steps (st) 0.0% 1.8% 23.0% 0.0% 10.9% 1.3% 2.9% 5.3% 0.5% 2.1% 0.0% 51.7%

Table 1 summarizes the AED-accuracy results of each of the systems
tested and it can be observed that significant improvement obtained
from using the late integration model. It is also significant the fact
that also the traditional tandem connectionist model out-performs
the the GMM-HMM as it was learned in [3]. Additionally, the con-
fusion matrix between the actual and detected acoustic events can be
found in Table 2. Here it can be observed which acoustic events are
more prone to be confused with others, and to which extend, reflect-
ing frame-wise performance. This defeats the meaning of acoustic
event to some extent, since the main target of AED is to obtain times-
tamps, and frame level performance is not a main target. However,
it is interesting to observe the low rates of confusion obtained for
applause (ap), laugh (la). Other than that, the results are all coherent
with the accuracy results. We also performed False Alarm and False
Rejection Rates (FAR, and FRR, respectively) which revealed that
also these measure improve from using tandem connectionist model
with early integration (FAR of 8.75%, and FRR of 62.17%), to late
integration with sum stream combination (FAR of 1.75%, and FRR
of 40.83%).

5. CONCLUSION

As shown above, in the experiment we have compared the perfor-
mance in AED between traditional GMM-HMM, tandem connec-
tionist with early integration, and tandem connectionist with late in-
tegration schemes, in AED of isolated acoustic events, concluding
that the usage of posteriors of each acoustic event as features fed for
a GMM-HMM model performs better than using acoustic features
directly in a generative model. Moreover, we observed that there is
a clear benefit in using late feature integration both in complexity
and performance. These conclusions lead to think that exploiting the
modified schemes of the tandem connectionist model can provide an
advantage when combining features from different fluctuation scales
in the same model. We also assume that more extensive error analy-
sis has to be done in terms of variating the number of hidden nodes in
the MLPs, among other parameters to obtain more accurate conclu-
sions. However, this study might tackle some questions to be solved
in future works.

Additionally, yet another question remains to be answered
regarding the analogy with speech recognition. Such analogy ap-
proach has provided great results in other fields (e.g. music infor-
mation retrieval), however, acoustic scene analysis might require a
different paradigm to exploit properly most successful technologies
of speech recognition.
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