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ABSTRACT

SPLICE is one of the speech enhancement methods based on fea-

ture conversion, which shows a high performance with a relatively

small amount of calculation. After modeling noisy speech features

as GMM, conversion functions are obtained for individual GMM

components. The original SPLICE estimates clean feature vectors

as a weighted summation of the converted versions of input vec-

tors. Since the conversion functions are determined and fixed only

by using training data, the effectiveness of the original SPLICE will

be lower in the case of unseen noisy environments. In this paper,

we propose a novel method to adapt the conversion functions to

work well in unseen environments. First, to realize adaptive con-

version functions, we characterize those functions using their super

vectors. Then, we conduct PCA on the super vectors to reduce the

number of parameters to be adapted. By representing the super vec-

tors through their PCA–based base functions and weights, we imple-

ment an efficient adaptation method of conversion functions, which

we call Eigen–SPLICE here after. Evaluation experiments show that

Eigen–SPLICE has reduced word error rate by 21.0% relative to the

conventional SPLICE, and by 24.1% relative to EMS SPLICE in the

test set B of the AURORA–2 task.

Index Terms— SPLICE, Piecewise linear techniques, Noise ro-

bust, Speech recognition, Principal component analysis

1. INTRODUCTION

As people begin to use speech recognition applications not only in

quiet environments but also in noisy environments, noise robustness

becomes a required feature for any speech recognition application.

In real noisy environments speech signals are distorted by various

kinds of noises, which cause mismatch easily between input speech

features and the acoustic models which were trained in a clean con-

dition. To solve this problem, various methods have been proposed.

For example, [1] and [2] proposed a method of using VTS

(Vector Taylor Series) and [3] took another approach of feature en-

hancement using noisy speech and its original clean speech, called

Piecewise LInear Compensation for Environments, or SPLICE. Both

methods were shown to be effective to realize noise robustness in

automatic speech recognition. They use statistical information of

the environmental noise, with which the VTS method adapts clean

speech acoustic models into the ones for noisy speech. On the other

hand, SPLICE trains a noisy speech model using GMM (Gaussian

Mixture Model) in advance and uses it for feature enhancement,

where noisy speech features are converted to clean ones. These two

methods showed high performances in a continuous digits recogni-

tion task in noisy environments using AURORA–2 [4].

These methods, however, have some problems in real noisy en-

vironments. First, the VTS method is computationally expensive

to perform frame-by-frame model adaptation especially when it is

applied to MFCC features, while it is not costly when applied to

FBANK features. One the other hand, the conversion functions of

the original SPLICE are determined and fixed only by using training

data, so the effectiveness of the original SPLICE will be lower in the

case of unseen noisy environments. To solve this problem, EMS (En-

vironmental Model Selection) method was already proposed. EMS

SPLICE softly estimates the kind of environment beforehand by cal-

culating its posterior probability and enhance input noisy features

using the calculated results. Similar to the original SPLICE, since

EMS also uses fixed sets of training environments, however, its per-

formance is expected to be still insufficient in unseen environments.

In this paper, we propose a novel method to improve SPLICE to

work well in unseen environments by adapting the conversion func-

tions for any input noisy environments. First, to realize adaptive

conversion functions, we characterize those functions using their su-

per vectors. Then, we conduct PCA on the super vectors to reduce

the number of parameters to be adapted. By representing the super

vectors through their PCA–based base functions and weights, we

implement an efficient adaptation method of conversion functions.

To confirm whether it works or not, we conduct experiments with

AURORA–2 database.

The rest of the paper is organized as follows. Section 2 describes

the conventional SPLICE method. Section 3 presents our proposed

method of Eigen–SPLICE. Section 4 presents the experimental re-

sults in the AURORA–2 database. Finally, Section 5 concludes the

paper and describes future directions.

2. CONVENTIONAL SPLICE

In this section, we review the conventional SPLICE, which has

the training phase and the enhancing phase. In the training phase,

SPLICE assumes that noisy speech features can be modeled as

a GMM and linear conversion functions can be estimated for each

sub-space of the GMM using time-aligned sequences of clean speech

features and noisy speech features, i.e., stereo data. In the enhancing

phase, SPLICE converts given noisy speech features into clean ones.

The piecewise linear conversions are intended to approximate the

true nonlinear conversions of noisy speech features into their clean

versions. This SPLICE technique has been improved by various

methods, such as [5] and [6].
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Given clean speech feature, x, and noisy speech feature, y, we

describe the detail procedure of SPLICE.

2.1. Model of speech and its distortion

The first assumption is that the noisy speech feature follows GMM:

p(y) =
X

s

p(y, s),

=
X

s

p(y|s)p(s), where

p(y|s) = N(y; μs,Σs). (1)

s, μ and Σ represent the index of GMM’s component, mean vector

and variance and covariance matrix respectively.

The second assumption made by the SPLICE is that the condi-

tional probability density function (PDF) for clean speech feature x
given noisy speech feature y and the GMM component index s, is

Gaussian whose mean vector is obtained through linear transforma-

tion of y. Thus, the conditional PDF is assumed to have the follow-

ing form of:

p(x|y, s) = N(x; Asy + rs,Γs). (2)

Γs represents variance and covariance matrix of the distribution.

2.2. Feature enhancement

Because of these two basic assumptions, it becomes easier to esti-

mate clean speech features from their distorted counterparts by the

MMSE method. The MMSE estimate is obtained by the following

conditional expectation of clean speech feature x given the observed

noisy speech feature y:

x̂ = Ex[x|y] =
X

s

p(s|y)Ex[x|y, s]. (3)

Using Eq. 2, it is clear that:

Ex[x|y, s] = Asy + rs. (4)

By using Eq. 4 in Eq. 3, we get

x̂ =
X

s

p(s|y) (Asy + rs) . (5)

The MMSE estimate of x is a weighted summation of the converted

features based on each GMM component’s conversion function.

2.3. SPLICE training

Since noisy speech distribution p(y) is assumed to follow a mixture

of Gaussians, the standard EM algorithm can be used to estimate μs,
and Σs on noisy speech. If stereo data are available, the parameters

As and rs of the conditional PDF p(x|y, s) can be estimated using

the maximum likelihood criterion:

rs =

P
t p(s|yt)(xt − yt)P

t p(s|yt)
,

As =

P
t p(s|yt) (xt − rs) yT

tP
t p(s|yt)yty

T
t

, where

p(s|yt) =
p(yt|s)p(s)P
s p(yt|n)p(s)

. (6)

t represents the index of time and T represents transposition. In this

training procedure, SPLICE requires a set of stereo data. Since con-

version functions of SPLICE are determined and fixed only by using

training data, the effectiveness of the original SPLICE will be lower

in the case of unseen noisy environments. To solve this problem,

EMS (Environmental Model Selection) was already proposed.

2.4. Environmental model selection

The original SPLICE uses GMM (a set of Gaussians) to model all

the kinds of noisy environments prepared in the training data. Con-

trary to this, EMS (Environmental Model Selection) SPLICE uses

GMM for each noisy environment. Mathematically speaking, EMS

SPLICE is realized as follows.

First, we calculate p(e|yt), and then calculate EMS SPLICE’s

output as weighted sum of each specific environment’s output using

its own GMM and conversion function:

x̂tEMS =
X

e

p(e|yt)

(X
se

p(se|yt) (Aseyt + rse)

)
, (7)

where e represents the index of environment, and se represents the

index of GMM component for environment e. Similar to the original

SPLICE, since EMS uses fixed sets of training environments, its per-

formance is expected to be still insufficient in unseen environments.

In the next section, we describe our proposed method for im-

proving the conventional method to work well in unseen environ-

ments by adapting the conversion functions.

3. EIGEN–SPLICE

We try to improve SPLICE to work well in unseen environments by

adapting its conversion functions for any input noisy environments.

In this paper we adapt only rs in Eq. 5 to simplify the implementa-

tion. This PCA–based method is commonly used by such as Eigen–

MLLR [7] and Eigen Voice Conversion (EVC) [8]. Unlike Eigen–

MLLR or EVC, our proposed method does not adapt the parameters

of PDF, but adapts the parameters of conversion functions. Thus, our

proposed method needs not only input noisy speech but also its clean

counterparts for the adaptation. However, it is actually impossible to

get both of stereo data in unseen noisy environments, so we have to

prepare quasi-stereo data from input noisy speech and clean speech

in the training data.

3.1. Calculation of principal components

First, we train the common GMM and the common conversion ma-

trices As for all types and SNR levels of noisy environments in the

training data. This procedure is the same as in the original SPLICE.

Next, we tain ri
s for each type and SNR level of noisy environments:

r̂s
i = argmin

ri
s

X
t

X
s

p(s|yi
t)
n

xi
t − (Asy

i
t + ri

s)
o2

, (8)

where i represents the index of environments. Then, we concatenate

ri
s of all components into a super vector SV i:

SV i = {r̂i
1, · · · , r̂i

s, · · · , r̂i
S}, (9)

where S represents the number of Gaussian mixtures. This super

vector is calculated for each environment. After that, we conduct
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PCA and obtain a bias vector BV and the principal components

P Cm (m = 1, · · ·M) from these super vectors:

BV = {b1, · · · , bs, · · · , bS}, (10)

P C1 = {c1
1, · · · , c1

s, · · · , c1
S},

...

P Cm = {cm
1 , · · · , cm

s , · · · , cm
S },

...

P CM = {cM
1 , · · · , cM

s , · · · , cM
S }, (11)

where m and M represent the index and the number of the principal

components, respectively. Finally, using the obtained bias vector and

the principal components, we rewrite Eq. 5 into the new formula:

x̂t =
X

s

p(s|yt) (Asyt + Bsw + bs) , where

Bs = {c1T
s , · · · , cMT

s }, (12)

where w represents the weight parameters of the principal compo-

nents.

3.2. Adaptation

In Eq. 12, As, Bs and bs were estimated in the training phrase and,

in the adaptation phase, only w is adaptively estimated and used

for conversion. The weight parameters are estimated by the MMSE

method using a small amount of stereo data of a new environment:

ŵ = argmin
w

X
t

{xt−
X

s

p(s|yt) (Asyt+Bsw+bs)}2.(13)

ŵ can be obtained analytically:

ŵ =

 X
t

MT
t M t

!−1 X
t

MT
t Et

!
, where

M t =
X

s

p(s|yt)Bs,

Et = xt −
X

s

p(s|yt) (Asyt + bs, ) . (14)

3.3. Quasi–stereo data

As we described, the proposed method needs the stereo data of new

environments. However, it is actually impossible to get stereo data in

unseen noisy environments, so we have to generate quasi-stereo data

from input noisy speech and clean speech in training data. First, we

assume that the beginning part and the ending part of noisy speech

contains only noise. Then, we add the noisy segments to clean

speech in the training data. The obtained quasi–stereo data for the

new environment is used for adaptation. It should be noted that, ŵ
is estimated by using noise features, not noisy speech features, of a

new noisy utterance and some clean utterances in the training data.

The figure 1 shows the over view of the convectional SPLICE and

our proposed Eigen–SPLICE.

4. EXPERIMENT

To confirm whether our proposed method works or not, several ex-

periments are conducted using AURORA–2 database.
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Fig. 1. Overview of Eigen-SPLICE

4.1. Experimental condition

First, we train the common conversion function of As using 16 envi-

ronments, 4 types of Subw, Babble, Car and Exhibit and 4 different

SNR levels, in the training set of AURORA–2. Next, we calculate ri
s

(i = 1, · · · , 16) for each environment using Eq. 8, and made 16 su-

per vectors SV i (i = 1, · · · 16). Then, we conduct PCA to obtain a

bias vector BV and principal components P Cm (m = 1, · · ·M).

We use test sets of A and B to test our proposed method. Test

set A contains utterances in the same environments as those in the

training data and test set B contains utterances in unseen environ-

ments (Rest., Street, Airport, Sta.). Experiments using the test sets

A and B show us the noise–closed performance and the noise–open

performance, respectively.

In these experiments, we assume that the beginning 250 [ms] and

the ending 250 [ms] of each input utterance correspond to noisy seg-

ments without speech. We add these noise segments to 8 utterances

which are randomly selected from the clean training data. And we

use the first 6 principal components for representing the super vec-

tors. This experimental set–up is because a preliminary experiment

had showed these parameters were the best for adaptation. We use

39 dimensional features of MFCC +Δ + ΔΔ. We evaluate the pro-

posed method in the form of the averaged recognition accuracy in

SNR 0, 5, 10, 15, 20 [dB]. The conventional SPLICE and Eigen–

SPLICE have a 512–mixture GMM for modeling the noisy speech

feature vectors, EMS has a 128–mixture GMM for each environ-

ment. We trained word HMMs only for clean environments, each

of which has 18 states for each word and each state has 20–mixture

GMM.

4.2. Results and discussion

Table 1. shows the results of speech recognition in test-set A and

set B. Set A contains utterances in the same environments as those

used in the training data. In this situation, EMS SPLICE works the

best, but its superiority is very small. However, the performance

of SPLICE and EMS SPLICE in set B, unseen environments, are de-

graded, while the performance of Eigen–SPLICE remains very close

to the performance in the closed situation.

Table 2. shows the detail of the results in set B. We can see that
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Table 1. Word recognition accuracies in the four cases of no

enhancement, conventional SPLICE, EMS SPLICE and Eigen-

SPLICE

no enhance SPLICE EMS SPLICE E–SPLICE

Set A 51.45 85.95 87.53 87.32

Set B 44.86 83.71 83.04 87.13

Eigen–SPLICE works well even in high noise levels, in which the

other methods don’t work well. We consider that this performance

gain is directly attributed to adaptive estimation of the conversion

functions.

5. CONCLUSION

We proposed a novel method to improve SPLICE to work well in

unseen environments by adapting the conversion functions using

quasi–stereo data. We reduced the number of parameters by using

PCA, so much less stereo data are needed to adapt the conversion

functions, and quasi–stereo data are prepared by using noise seg-

ments in input utterances and clean utterances in the training data.

We conducted evaluation experiments to investigate accuracy of

speech recognition in noisy environments. As the result, it was

demonstrated that Eigen–SPLICE works the best in unseen envi-

ronments, in which the conventional SPLICE and EMS don’t work

well.

The proposed method can be applied to other types of features.

For example, the features obtained through noise mean normaliza-

tion [3] and those obtained with multi layer perceptron can be used

in the proposed method [9]. Furthermore, our proposed method can

be applied to uncertainty decoding [10]. We believe that they will

improve the performance of Eigen–SPLICE even more.
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