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ABSTRACT 

 
This paper investigates class-based speech recognition, and more 
precisely the impact of the selection of the training samples for 
each class on the final speech recognition performance. Increasing 
the number of recognition classes should lead to more specific 
models, and thus to better recognition performance, providing the 
trained model parameters are reliable. However, when the number 
of classes increases, the amount of training data for each class gets 
smaller, and may lead to unreliable parameters. The experiments 
described in the paper show that taking into account a 
classification margin tolerance helps associating more training data 
to each class, and improves the overall speech recognition 
performance. 
 

Index Terms— Speech recognition, class models, 
classification margin, speech classification. 

1. INTRODUCTION 

It is well known that many variability sources affect the speech 
signal and impact on the speech recognition performance [1], and 
that best speech recognition performance is achieved when 
operational (test) conditions match with the training conditions. 
That is why speech transcription systems used for transcribing 
audio signals runs in several passes, the first one being a 
diarization pass. The speech signal is split into segments according 
to the detected speaker changes, and, the environment condition 
(studio quality vs. telephone quality) as well as the gender are 
estimated for each segment. Then, in the following speech 
decoding pass, environment and gender specific models are used. 
Subsequent passes may be applied to refine the decoding through 
the use of discriminative models and unsupervised adaptation 
processes. 

Increasing the amount of Gaussian components in the mixture 
densities usually improves the acoustic modeling through a better 
handling of various variability influences, and consequently 
improves the speech recognition performance. However because of 
the various variability values that need to be handled by the model 
(for example multiple speakers), the acoustic space covered by the 
mixture densities is rather large, and this limits the selectivity of 
the densities, and hence the recognition performance. One way to 
tackle this phenomenon is to use a multiple modeling approach [1]. 
Instead of having a single acoustic model covering all the 
variability values, several models are developed, each model 
covering only a subset of the variability values. Then for the 
recognition process several schemes are possible. The variability 

value can be estimated in a deterministic way and the 
corresponding model used for decoding the utterance, or the 
decoding can be performed for each model and the one leading to 
the best likelihood score provides the answer. Other combinations 
of multiple decoding answers are also possible, such as the 
ROVER approach [2]. 

When the speaker is known, speaker dependent modeling is the 
most efficient approach. Adaptation techniques are useful to derive 
good speaker dependent models from a generic speaker 
independent model and some adaptation data collected from the 
target speaker. When only a limited amount of adaptation data is 
available, acoustic models can be adapted through eigenvoice-
based techniques [3] or through interpolating cluster-based models 
[4] or reference speaker models [5]. 

Dynamic Bayesian network (DBN) [6] provides an efficient 
framework for making acoustic models dependent on some 
auxiliary variable that represents a variability source under 
consideration, as for example the pitch in [7], some hidden factors 
as in [8] or some inter-speaker variability [9]. 

In those approaches, class (i.e. condition, gender, speaker, ...) 
specific models need to be trained. Ideally we would like to have 
specific acoustic models for each possible class in order to achieve 
performance similar to that provided by a speaker and condition 
adapted model. However, when the number of classes increases, 
there is less and less data available for training the class-model 
parameters, the model gets unreliable, and speech recognition 
performance degrades. 

Hence the main topic of this paper which is the introduction of 
a classification margin in order to increase the amount of data 
associated to each class for an improved training (or adaptation) of 
the class-model parameters. This is, in some way, similar to the 
handling of the boundary uncertainty that was investigated in [10]. 
The handling of the uncertainty led to increasing the amount of 
examples used for estimating speaking rate dependent 
pronunciation variant probabilities. 

The organization of the paper is the following. Section 2 recalls 
the class-based speech recognition approach and presents the 
procedure used for creating automatically the training classes. 
Section 3 introduces the classification margin feature, and analyses 
its impact with respect to the size of the classes. Section 4 presents 
the speech recognition experiments and discusses the results. 
Finally a conclusion ends the paper. 

2. CLASS-BASED SPEECH RECOGNITION 

Traditional approaches for transcribing broadcast news data rely on 
environment and speaker-gender specific models (e.g. [11]). Thus 
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acoustic models are typically trained for studio quality data (8 kHz 
bandwidth) and telephone quality data (4 kHz bandwidth), and 
then adapted to the gender. 

For transcribing the data, after a first diarization pass, the 
decoding of each audio segment uses the phoneme acoustic models 
corresponding to the estimated environment and speaker-gender. 

2.1. Speech recognition and class-based models 

This aim of class-based speech recognition is to extend the 
approach beyond the 2 traditional classes associated to the speaker 
gender. 

So, let say we have K  data classes ( 1C , 2C , ..., KC ). A GMM 

kΦ  is associated to each class kC , and used for classifying 

unknown audio segments iX : 

 ( ) ( ) lXPXPCX likiki ∀Φ≥Φ⇔∈  (1) 

Once, an audio segment iX  is associated to a class kC , the 

corresponding speech signal is decoded with the phoneme acoustic 
models kΛ  that have previously been trained (adapted) using data 

of the class kC . The optimal sequence of words Ŵ  is then given 

by: 

 ( ) ( )WPWXPW ki
W

Λ= ,maxargˆ  (2) 

2.2. Automatic classification of training data 

In this paper, we have used an automatic procedure to classify the 
training data in a arbitrary number of classes, in fact, 2, 4, 8 or 16 
classes. The procedure works in an iterative manner, as presented 
in Fig. 1. The acoustic analysis is the same as for speech 
recognition (MFCC features, plus first and second temporal 
derivatives). 

The procedure starts with a single class corresponding to the 
whole training data, and first estimates the corresponding GMM 
(k=1), top of Fig. 1. 

Then at each pass, the GMMs are duplicated (i.e. GMM kΦ  is 

copied as 
1kΦ  and 

2kΦ ) and the values of their mean parameters 

are modified by a small random value. Then, 
1. The whole training set is classified using this new set of 

GMMs (each audio segment being associated to the 
class/GMM that maximizes the likelihood as in EQ (1)). 

2. The data in each class is then used to train the 
corresponding GMM. 

3. The above classification and training steps are repeated 
until a convergence criterion is reached (or maximum 
number of iterations). 

The number of GMMs (one per class) is increased up to a 
predefined number of classes. 

3. CLASSIFICATION MARGIN 

In a traditional approach, each audio segment of the training set is 
associated to a single class, that is to the class corresponding to the 
GMM which provides the highest likelihood. 

However, the characteristics of the data at the boundaries 
changes slowly when moving from one class to the next one. So, it 
seems reasonable to affect data which are at the boundary of 
adjacent classes to the two classes. 

3.1. Classification margin 

The boundary between two classes corresponds to the audio 
segments which have the same likelihood with respect to the 
GMMs of these two classes. Hence EQ (1) can be modified in 
order to associate audio segments which are close to the boundary 
to several classes: 
 ( ) ( ) δ−Φ≥Φ⇔∈ li

l
kiki XPXPCX max  (3) 

where δ  is the tolerance margin for classifying audio segments. 
When δ  is set to 0, EQ (3) and (1) lead to the same 

classification results. Increasing the margin δ  increases the 
amount of audio segments which are associated to any given class. 

3.2. Experimental analysis of some classes 

Figures 2 and 3 display the number of audio segments of the 
training data which are associated to each class for different values 
of the classification margin δ . Logarithmic scales are used on the 
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Fig. 1. - Iterative procedure for automatic training data 
classification 
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vertical axes. On Fig. 2, dashed lines are used for the 2-class 
approach, and solid lines are used for the 4-class approach. Fig. 3 
display the corresponding information for the 16-class approach. 
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Fig. 2. - Number of audio segments for training the acoustic 
models of each class of the 2-class and 4-class models according to 
the classification margin. 
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Fig. 3. - Number of audio segments for training the acoustic 
models of each class of the 16-class models according to the 
classification margin. 

The figures show that the amount of data is not evenly 
distributed between the classes (although random perturbations of 
the GMM parameters are applied when increasing the number of 
classes). In the 4-class approach, one class has much more data 
than the three other ones, and in the 16-class approach, one class 
has one order of magnitude less data than the other classes. 

All the curves show a smooth increase of the number of audio 
segments associated to each class when the classification margin 
value is increased from 0.0 up to 2.0. 

4. SPEECH RECOGNITION EXPERIMENTS 

The speech recognition evaluations have been conducted using 
French broadcast news data from the ESTER2 evaluation 
campaign [12]. 

4.1. Speech recognition framework 

All the experiments have been conducted using the Sphinx speech 
recognition toolkit [13]. Moreover, as we focused here on the 
classification impact, we apply only a single pass speech decoding. 
This means that there is no discriminative processing (LDA, MPE, 
...) nor speaker adapted acoustic models (MLLR, SAT, ...) used. 
Hence, after the diarization step which segments the audio data 
according to speakers, and classifies each audio segment with 
respect to the environment (studio quality data vs. telephone 
quality data), the class-based speech decoding is applied for each 
segment: the class corresponding to the segment is determined 
(highest GMM likelihood - i.e. each segment is associated to a 
single class), and then, the speech decoding is performed with the 
phonetic acoustic models corresponding to that class. 

Each acoustic model has 4500 senones (shared densities) and 
64 Gaussian components per mixture. Generic phonetic models 
(one for studio quality, and one for telephone quality) are first 
trained using all the available training data. Then, the context-
dependent acoustic models are adapted to each class using the 
associated data, as defined by EQ (3). Hence the training data 
selected for training the class acoustic models takes into account 
the classification margin δ . When the margin δ  gets larger, more 
audio segments are selected for adapting the class acoustic models. 

The training is carried out on the ESTER2 training data (about 
190 hours) and the recognition results are reported for a large 
subset of the ESTER2 development data, about 4h30 of audio 
signal corresponding to 36 800 running words. 

In our experiments, the pronunciation lexicon used for speech 
recognition contains about 64 000 entries. A trigram language 
model is used. 

4.2. Speech recognition performance evaluation 

Word error rates measured on the ESTER2 development data are 
reported in Table 1. for different class configurations (2, 4, 8 and 
16 classes), and taking into account different classification margin 
values for classifying the training set. 

Table 1. Word error rates on ESTER2 development data with 
respect to the number of classes and the classification margin used 
in selecting the training data for each class. 

Margin 
No 

margin 
0.5 1.0 1.5 2.0 

2 classes 25.24% 25.06% 25.21% 25.60% 25.65% 
4 classes 25.12% 25.07% 25.04% 25.20% 25.43% 
8 classes 25.05% 24.95% 24.93% 24.81% 25.14% 

16 classes 25.66% 24.76% 24.67% 24.77% 25.11% 
 

When only the generic environment models (i.e. studio quality 
and telephone quality) are used, which amounts to having only 1 
class, the word error rate achieved on this ESTER2 development 
data is 25.97%. When the traditional gender classification (male 
vs. female adapted models) is used, the word error rate goes down 
to 24.91%. 

The results displayed in the column "no margin" correspond to 
a standard classification of the training data, i.e. each training 
audio segment is associated to the class of the GMM leading to the 
highest likelihood. With 2 classes, there is a significant 
improvement with respect to the 1-class approach, but the results 
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are not as good as those obtained with the gender specific models. 
Moreover, when the amount of classes gets too high, speech 
recognition performance degrades. 

Each line of the table shows the impact of increasing the 
training set of each class through the classification margin δ . Each 
line exhibits a similar behavior. By introducing a classification 
margin when associating the training audio segments to each class, 
this increases the number of audio segments associated to each 
class, as discussed previously in section 3.2. Having introduced 
rather similar additional data (at least when the margin is not too 
large), this does not affect too much the relevance of the estimated 
parameters with respect to the acoustic modeling of the class. 
However, having enlarged the size of the class training set makes 
the resulting class model parameters more reliable. But using a too 
large margin (e.g. 2.0 in Table 1) degrades the speech recognition 
performance. The optimal values range between 0.5 and 1.5 
depending on the number of classes used. 

It is also interesting to note that by improving the training of 
the class acoustic model parameters, it is possible to successfully 
go beyond the traditional gender-based classification, and 
outperformed its speech recognition performance (24.67% for the 
16-class approach vs. 24.91% for the gender-based approach). 

In the reported experiments, only MAP adaptation was used to 
adapt the generic model parameters to each class data. Its 
combination with MLLR has not yet been investigated. Also, as 
the amount of data associated to each class is highly variable, it 
might be interesting to adjust the classification margin according to 
the class population in order to guarantee enough data for a 
reliable adaptation. 

Finally, another important aspect to investigate further is the 
classification of the training data. Here a simple technique based 
on GMM modeling was used. More refined speaker similarity 
metrics have been investigated in the past (e.g. [14], with methods 
emphasizing on vowels, or methods using phonetic HMMs, ...) and 
could be used to cluster the training data and build the initial 
classes. 

5. CONCLUSION 

In this paper we have investigated the training of class-based 
acoustic models in a speech transcription context. A standard 
automatic classification procedure has been presented to build 
automatically an arbitrary amount of classes. Here, 2, 4, 8 and 16 
classes were created. The approach iterates duplication and 
perturbation of GMM models, followed by several classification 
and training steps. When the number of classes increases, there are 
fewer and fewer training data in each class for adapting the 
acoustic class-model parameters, which may lead to unreliable 
parameters and thus degrade speech recognition performance.  

Hence the main point investigated in the paper, which is the 
introduction of a classification margin in the selection of the 
training data associated to each class. With such a margin, the 
selected data comes from the class itself (audio segments with 
highest likelihood obtained for the GMM of the class), and also 
from similar data belonging to other classes, but close to the class 
boundary. This way, more data are selected for adapting the 
parameters of each class acoustic models. This helps obtaining 
more reliable acoustic models for each class. The experiments have 
shown that using a small classification margin improves the speech 
recognition performance. This way, it was possible to go beyond 
and to outperform the traditional gender-based classification. 

Future work should investigate more refined classification 
techniques in order to achieve more homogeneous classes, and 
improve further the speech recognition performance. 
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