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ABSTRACT

We introduce a new approach to training multilayer per-
ceptrons (MLPs) for large vocabulary continuous speech
recognition (LVCSR) in new languages which have only few
hours of annotated in-domain training data (for example, 1
hour of data). In our approach, large amounts of annotated
out-of-domain data from multiple languages are used to train
multilingual MLP systems without dealing with the different
phoneme sets for these languages. Features extracted from
these MLP systems are used to train LVCSR systems in the
low-resource language similar to the Tandem approach. In
our experiments, the proposed features provide a relative im-
provement of about 30% in an low-resource LVCSR setting
with only one hour of training data.

Index Terms— Multilingual training, multilayer percep-
trons, MLP features for low-resource LVCSR.

1. INTRODUCTION

MLP based posterior features are increasingly being used to
improve the performance of LVCSR systems [1, 2]. An im-
portant factor that impacts performance of these features is
the amount of data used to train the MLP systems. For new
languages with only few hours of transcribed data, the per-
formance of these data driven features is low. A potential
solution to this problem is to use transcribed data available
from other languages to build models which can be shared
with the low-resource language. However training such sys-
tems requires all the multilingual data to be transcribed using
a common phoneset across the different languages. This com-
mon phoneset can be derived either in a data driven fashion
or using phonetic sets such as the International Phonetic Al-
phabet (IPA) [3]. More recently cross-lingual training with
Subspace Gaussian Mixture Models (SGMM) [4] have also
been proposed for this task.

The research presented in this paper was partially funded by IARPA
BEST program under contract Z857701 and DARPA RATS program under
D10PC20015. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the IARPA or DARPA.

In our previous work [5], we explored a data driven ap-
proach for finding a common phoneset across different lan-
guages. Using this approach we adapt a multilingual MLP
trained on 30 hours of Spanish and German using one hour of
English (considered as the low-resource language). Tandem
features [1] derived from such a system were then used for
an LVCSR task using one hour of English. In this paper we
propose a different MLP architecture and training method for
the same task. The primary advantage of this new architecture
is that it does not require the multilingual data to be mapped
using a common phoneset across various languages.

In the proposed architecture, we train a 4 layer multilayer
perceptron. The MLP has a linear input layer with a size cor-
responding to the dimension of the input feature vector, fol-
lowed by two non-linear layers and a final linear layer with a
size corresponding to the phoneset of the language the MLP is
being trained. While training on multiple languages with dif-
ferent phonesets, the first 3 layers are shared. The last layer
that is specific to the phoneme set of each language is then
modified. Modifying only this layer allows us to train across
different languages.

Section 2 describes the training procedure for the pro-
posed MLP architecture using multiple languages. Section
3 talks about how we derive features from these multilingual
MLPs. We investigate the usefulness of this approach in Sec-
tion 4 with experiments on English, Spanish and German CTS
data. The paper concludes with a discussion in Section 5.

2. TRAINING THE NETWORKS

In this section we describe the training approach for the pro-
posed MLP system on two languages - P and Q. P is the
out-of-domain language with larger amounts of training data
compared to the low-resource in-domain language Q. Both
languages have different phoneme sets of size p and q. The
network is trained using an acoustic representation with di-
mension d in the following steps -

A. Train the MLP on language P - We start by training a
4 layer MLP of size d,h1,h2,p on the high resource language
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Fig. 1. Block schematic of the proposed MLP system.

with randomly initialized weights. While the input and output
nodes are linear, the hidden nodes are non-linear. Similar to
bottleneck MLPs [6] or HATS [7], while the dimension of
h1 is high, h2 is low dimensional and is known as the ‘bot-
tleneck’ layer. We are motivated to introduce the bottleneck
layer to allow the network to learn a common low dimen-
sional representation among the languages.

B. Initialize the network to train on language Q - To con-
tinue training on the low-resource language which has a
different phoneme set size, we create a new 4 layer MLP of
size d,h1,h2,q. The first 3 layer weights of this new network
are initialized using weights from the MLP trained on the
high resource language. Instead of using random weights
between the last two layers, we initialize these weights from
a separately trained single layer perceptron.

To train the single layer perceptron, non-linear representa-
tions of the low-resource training data are derived by forward
passing the data through the first 3 layers of the MLP. The
data is then used to train a single layer network of size h2,q.

C. Train the MLP on language Q - Once the 4 layer MLP
of size d,h1,h2,q has been initialized, we re-train the MLP
on the low-resource language. By sharing weights across
languages the MLP is now able to train better on limited
amounts of in-domain data. Figure 1 is a schematic of the
proposed MLP system.

3. FEATURE EXTRACTION

The proposed 4 layer MLP are trained to estimate phoneme
posterior probabilities using the standard back propagation
algorithm with cross entropy error criteria. We derive two
kinds of features for LVCSR task from these networks -

A. Tandem features - These features are derived from the
posteriors estimated by the MLP at the fourth layer. When
networks are trained on multiple feature representations,
better posterior estimates can be derived by combining the
outputs from different system using posterior probability
combination rules. Phoneme posteriors are then converted to
features by gaussianizing the posteriors using the log function
and decorrelating them by using the Karhunen-Loeve trans-
form (KLT) [1]. A dimensionality reduction is also performed
by retaining only the feature components which contribute
most to the variance of the data.

B. Bottleneck features - Unlike Tandem features, bottleneck
features are derived as linear outputs of the neurons from the
bottleneck layer [6]. These outputs are used directly as fea-
tures for LVCSR features without applying any transforms.
When bottleneck features are derived from multiple feature
representations, these features are appended together and a
dimensionality reduction is performed using KLT to retain
only relevant components.

Both of these MLP features are derived using two acoustic
feature representations - short-term spectral PLP [8] features
and long-term modulation features using frequency domain
linear prediction (FDLP-M) [9].

4. EXPERIMENTS AND RESULTS

We use the English, German and Spanish parts of the Call-
home corpora collected by LDC for our experiments [10, 11,
12]. The conversational nature of speech along with high out-
of-vocabulary rates, use of foreign words and telephone chan-
nel distortions make the task of speech recognition on this
database challenging.

The English database consists of 120 spontaneous tele-
phone conversations between native English speakers. 80
conversations corresponding to about 15 hours of speech,
form the complete training data [10]. We use 1 hour of ran-
domly chosen speech covering all the speakers from the com-
plete train set for our experiments as an example of data from
a low-resource language. The English MLPs and subsequent
HMM-GMM systems use this one hour of data. Two sets
of 20 conversations, roughly containing 1.8 hours of speech
each, form the test and development sets. Similar to the En-
glish database, the German and Spanish databases consist of
100 and 120 spontaneous telephone conversation respectively
between native speakers. 15 hours of German and 16 hours of
Spanish are used as examples of out-of-domain high resource
languages for training the MLPs. Each of these languages
use different phoneme sets - 47 phonemes for English, 46 for
German and 28 for Spanish.

We train a single pass HTK based recognizer with 600
tied states and 4 mixtures per state on the 1 hour of data.
We use fewer states and mixtures per state since the amount
of training data is low. The recognizer uses a 62K trigram
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Fig. 2. Tandem and bottleneck features for low-resource LVCSR systems. We use 2 acoustic feature representations along with
2 languages - Spanish and German to train a multilingual system for 1 hour of English.

language model with an OOV rate of 0.4%, built using the
SRILM tools. The language model is interpolated from in-
dividual models created using the English Callhome corpus,
the Switchboard corpus [13], the Gigaword corpus [14] and
some web data. The web data is obtained by crawling the
web for sentences containing high frequency bigrams and tri-
grams occurring in the training text of the Callhome corpus.
The 90K PRONLEX dictionary with 47 phones is used as the
pronunciation dictionary for the system. The test data is de-
coded using the HTK decoder - HDecode, and scored with
the NIST scoring scripts.

4.1. Training with 2 languages

In our first set of experiments we train a 4 layer MLP sys-
tem on two languages - Spanish and English as outlined in
Sec. 2. We start by training two separate networks on the out-
of-domain language using 16 hours of Spanish. Both these
systems have a first hidden layer of 1000 nodes, a bottleneck
layer of 25 nodes and a final output layer of 28 nodes cor-
responding to the size of the Spanish phoneme set. 39 di-
mensional PLP features (13 cepstral + Δ + ΔΔ features) are
used along with a context of 9 frames to train the first network
with architecture - 351 x 1000 x 25 x 28. A second system
is trained on 476 dimensional modulation features derived us-
ing FDLP [9]. These features correspond to 28 static and dy-
namic modulation frequency components extracted from 17
bark spaced bands [9]. This system has an architecture of 476
x 1000 x 25 x 28. Both the systems are trained using the stan-
dard back propagation algorithm with cross entropy error cri-
teria. The learning rate and stopping criterion are controlled
by the error in the frame-based phoneme classification on the
cross validation data.

After the out-of-domain networks have been trained, the
in-domain networks to be trained on 1 hour of English are ini-
tialized in two stages as discussed in Sec. 2. In the first stage,
all weights except the weights between the bottleneck layer
and the output layer are initialized directly from the Spanish
network. The second set of weights are initialized from a sin-
gle layer network trained on non-linear representations of the
1 hour of English data derived by forward passing the English
data through the Spanish network till the bottleneck layer.
This network has an architecture of 25 x 47 corresponding
to the dimensionality of the non-linear representations from
the bottleneck layer of the Spanish network and the size of
the English phoneme set. These networks are trained on both
PLP and FDLPM features.

Once the networks has been initialized, PLP and FDLPM
features derived from 1 hour of English are used to train the
new in-domain low-resource networks. The networks trained
on PLP and FDLPM features now have an architecture of 351
x 1000 x 25 x 47 and 476 x 1000 x 25 x 47 respectively. 47
dimensional phoneme posteriors from both the networks are
combined using the Dempster Shafer (DS) theory of evidence
[15] before deriving the 25 dimensional Tandem set (Section
3A). The 2 sets of 25 dimensional bottleneck features from
each of the networks are appended together before applying a
dimensionality reduction to form a final 25 dimensional bot-
tleneck feature vector (Section 3B). Both the Tandem and bot-
tleneck features are used to train the subsequent low-resource
HMM-GMM system on 1 hour of training data.

Table 1 shows the results of using the proposed MLP
based features. We train the 1 hour HMM-GMM system on
39 dimensional PLP features (13 cepstral + Δ + ΔΔ features)
as our baseline system.
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Table 1. Word Recognition Accuracies (%) using two lan-
guages - Spanish and English

Baseline PLP features 28.8
Tandem features 34.9
Bottleneck features 35.4

4.2. Training with 3 languages

We extend our training on 2 languages to train a multilingual
MLP system on 3 languages - Spanish, German and English.
The training procedure starts as outlined earlier with 15 hours
of Spanish. The networks are then initialized to train with the
German data in two stages - with weights from the Spanish
system till the bottleneck layer and with weights from single
layer network trained to the German data. After the net has
been trained on the German data, we do a re-training using the
1 hour of English data. Figure 2 is a schematic of the training
and feature extraction procedure. Table 2 shows the results of
using the proposed MLP based features.

Table 2. Word Recognition Accuracies (%) using three lan-
guages - Spanish, German and English

Tandem features 35.8
Bottleneck features 37.2

The above results show the advantage of the proposed
approach to training MLPs on multilingual data. Unlike in
earlier approaches we are able to train on multiple languages
without using a common phoneset among the languages.
On a low-resource task, features extracted from these mul-
tilingual MLP give up to 30% relative improvement over
conventional features. While other techniques, for example
the SGMM approach [4] improve acoustic models, the pro-
posed approach focuses on improving feature representations
for low-resource applications.

5. CONCLUSIONS

In this paper we introduce a new technique for training mul-
tilingual MLPs. We propose the use of an language depen-
dent layer to conventional three layer MLPs which are used
to derive phoneme posteriors. This approach allows for shar-
ing resources across languages without needing to construct
common phoneme sets. Future work will include more stud-
ies on using several hundreds of hours of multilingual data in
a low-resource setting.
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