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ABSTRACT
Previous work applying Deep Belief Networks (DBNs) to problems
in speech processing has combined the output of a DBN trained over
a sliding window of input with an HMM or CRF to model linear-
chain dependencies in the output. We describe a new model called
Sequential DBN (SDBN) that uses inherently sequential models in
all hidden layers as well as in the output layer, so the latent variables
can potentially model long-range phenomena. The model introduces
minimal computational overhead compared to other DBN approaches
to sequential labeling, and achieves comparable performance with
a much smaller model (in terms of number of parameters). Experi-
ments on TIMIT phone recognition show that including sequential
information at all layers improves accuracy over baseline models that
do not use sequential information in the hidden layers.

Index Terms— deep learning, deep belief network, phone recog-
nition, TIMIT

1. INTRODUCTION

In Conditional Random Field models for sequential labeling
(CRFs) [1], a Markov Random Field (MRF) is defined over a
label sequence whose distribution depends on the input. CRFs allow
features of the input to be defined at arbitrary distance from the
associated label, but the user must consciously design such features
to allow long-distance dependencies. Feature design is a difficult,
task-specific problem, and it is especially difficult to design effective
long-range features for tasks such as speech recognition, where the
input is a relatively low-level representation of the acoustic signal.
On the other hand, results in speech science suggest that longer-range
features (that is, longer than the typical 25ms frame width) may be
useful for speech perception, particularly in noisy environments [2].

Several methods have been proposed to introduce hidden vari-
ables to CRFs that might be capable of modeling regularities in the
data that are not explicit in the features but nevertheless aid in clas-
sification. The hidden CRF (HCRF) appends a multinomial hidden
state to each phone class and optimizes the marginal likelihood [3],
so that subclasses may be induced that are easier to recognize than the
original classes. Another successful approach models each phone as a
sequence of three sub-phones, the boundaries of which are latent [4].
Other work uses a multi-layer CRF in which the data is mapped
through various layers of multinomial sequences that may be either
order-1, or order-0 Markov (that is, conditionally independent given
the input) [5]. All of these approaches are more effective than a CRF
with no latent structure, but better results have been obtained with a
richer latent representation, just as has been found to be the case for
static classification problems with Deep Belief Networks (DBNs).

Deep Belief Networks [6] have emerged as an empirically effec-
tive model for inducing rich feature representations of static (non-

sequential) data. Each layer of latent representation is learned by
training a Restricted Boltzmann Machine (RBM) to model the data
distribution at the next lower layer, using e.g., Contrastive Divergence
(CD). Since an RBM has bipartite structure, the hidden variables are
independent when conditioned on the input. The vector of expected
values of the hidden variables given the input can then be used as
the representation for further processing. Typically after training sev-
eral stacked RBMs in sequence, a discriminative classifier is trained
using the final layer as the input, and the parameters of the entire
chain of feature transformations are then fine-tuned according to a
discriminative training criterion.

Several researchers have employed DBNs to learn feature repre-
sentations for use in phone recognition. In [7] a DBN is trained to
classify subphones which is then combined with an HMM bigram
language model over subphones. In [8], a DBN phone classifier is
trained jointly with a CRF that uses the final hidden layer of the DBN
as features. The model surpassed the state-of-the-art on the TIMIT
phone recognition task, even though due to the static training of the
DBN, a) the hidden variables integrate information over a fixed 11
frame (≈110 ms) window and b) nothing can encourage the DBN
hidden states to exhibit continuity through time.

In the present work, we use a novel structure called a sequential
RBM (SRBM) that allows dependencies between corresponding hid-
den units at adjacent time frames in the hidden layer. Exact sampling
of hidden structures given the input and computation of conditional
expectations remains tractable in the SRBM—it involves only matrix-
multiplication and traditional forward-backward computations—so
CD training is still possible. As with RBMs, we can stack SRBMs and
append a sequence classifier (a CRF) to the top layer. The intention is
to let the model enforce smoothness in the hidden layers across time-
frames, and to allow the hidden variables to potentially model longer-
range phenomena. Finally, using a back-propagation-like algorithm,
we can discriminatively and jointly fine-tune the parameters of all of
the layers. We call the resulting model a Sequential DBN (SDBN).

Notation. If X is a matrix, the (i, j)th entry is Xij , the ith row
of X is Xi∗ and the j th column is X∗j . The submatrix of columns j
through k is X∗(j:k). The matrix transpose is denoted X ′. If X and
Y are matrices (or vectors) of the same dimension, 〈X,Y 〉 denotes
tr(X ′Y ). If X and Y have the same number of rows, [X|Y ] denotes
their concatenation. Finally, if x ∈ R

d is a vector, diag x ∈ R
d×d is

the diagonal matrix with x on its diagonal.

2. SEQUENTIAL RESTRICTED BOLTZMANN MACHINES

An SRBM defines a joint distribution over two matrix-valued layers,
a visible layer V ∈ R

nv×T and a hidden layer H ∈ R
nh×T . As in

an RBM, conditioned on the hidden layer, all variables of the visible
layer are independent. Conditioned on the visible layer, however,
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Fig. 1. Illustrations of an SRBM and an SDBN. Both consist of
T = 3 time frames, and have n1 = 5 input units and n2 = 3 hidden
units per frame in the first layer. The SDBN has n3 = 4 hidden units
per frame in the second layer, plus a single multinomial output per
frame. The red edges correspond to the weights of the matrix W0,
while the blue edges have weights given by t. Edges across layers
between adjacent time frames corresponding to Wδ (e.g., from V11

to H12) are omitted from the figures for clarity.

all rows of the hidden layer are independent, but we allow Markov
interactions in rows. Allowing temporal dependencies between vari-
ables within each row of the hidden layer lets the SRBM potentially
model long-range dependencies between the visible layer at widely
separated time frames, while retaining the tractability of important
operations like marginalizing and sampling.

While an RBM typically has dense connections between the
visible and hidden layers, an SRBM has only edges that are local

in time. Specifically, we use edges between Vit and Hj(t+δ) for all
i, j, t and for |δ| ≤ δmax. The weights on the edges are summarized in
the matrices Wδ ∈ R

nv×nh , where (Wδ)ij is the weight on all edges
(Vit, Hj(t+δ)). The hidden layer of the SRBM also has a vector of
transition parameters t ∈ R

nh that govern the interactions between
adjacent frames within each row of H , as we will describe shortly.
We intentionally disallow edges between observed units, in order
to encourage the hidden layer to model any dependencies between
time frames of the observations. Figure 1(a) illustrates the graphical
(MRF) structure of an SRBM.1

In this work, we assume the hidden variables are always binary,2

meaning H ∈ {±1}nh×T , and the observed variables are either
binary (V ∈ {±1}nv×T ) or real-valued Gaussian (V ∈ R

nv×T ).
For δmax = 1, the energy of a configuration is defined in terms of the
matrix Ah ∈ R

nh×T :

Ah =
[
W ′

−1V∗(2:T )

∣∣0]+W ′
0V +

[
0
∣∣W ′

1V∗(1:T−1)

]
. (1)

In (1), the middle term W ′
0V produces the matrix of inputs to each

hidden unit coming from the visible units at the same time frame. The
other two terms add the influence of visible units at the preceding and
subsequent frame. The generalization to δmax > 1 is straightforward.

Let U = diag t. If both layers are binary, then Pr(V,H) ∝
exp−EB(V,H) where the energy function is

EB(V,H) = −〈H,Ah〉 −
T−1∑
t=1

〈H∗t, UH∗(t+1)〉. (2)

Defining

Av =
[
0
∣∣W−1H∗(1:T−1)

]
+W0H +

[
W1H∗(2:T )

∣∣0] ,
note that

Pr(V |H) ∝ exp−EB(V,H) ∝ exp〈H,Ah〉 = exp〈V,Av〉,
so the Vit are independent given H , with Pr(Vit|H) ∝ expAv

itVit,
or Pr(Vit|H) = σ(2VitA

v
it) where σ(x) = (1 + exp−x)−1.

If the visible layer is Gaussian, then the joint density is
f(V,H) ∝ exp−EG(V,H) where

EG(V,H) = −〈H,Ah〉 −
T−1∑
t=1

〈H∗t, UH∗(t+1)〉+ 1

2
〈V, V 〉.

Now f(V |H) ∝ exp
(〈V,Av〉 − 1

2

∑
it V

2
it

)
, so the Vit are inde-

pendent given H , with Vit|H ∼ N (Av
it, 1).

Regardless of the type of visible layer, Pr(H|V ) factorizes into
terms involving individual Hjt and terms involving HjtHj(t+1):

Pr(H|V ) ∝ exp

(
〈H,Ah〉+

T−1∑
t=1

〈H∗t, UH∗(t+1)〉
)

=
nh∏
j=1

exp

(
〈Hj∗, A

h
j∗〉+

T−1∑
t=1

tjHjtHj(t+1)

)
(3)

=
nh∏
j=1

(
T∏

t=1

expHjtA
h
jt

)
·
(

T−1∏
t=1

exp tjHjtHj(t+1)

)
,

1In the experiments we also include three vectors of bias terms: one for
H∗1, one for H∗T and one that is shared by all columns of H . We omit these
from the exposition to keep the formulas uncluttered.

2Usually, “binary units” take the values 0/1, but we found that our model
can be described more cleanly in terms of ±1 units. Given the way activation
is defined in (3), using ±1 units corresponds to the use of tanh activation
functions in an MLP with standard 0/1 units.
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So given V , the rows of H are independent order-1 Markov sequences
with binary states, and the forward-backward algorithm can be used
to sample from Pr(H|V ) and to determine E [H|V ].

It is not hard to show that the gradient of the log-likelihood

log Pr(V = V̂ ) with respect to the Wδ has the following form,
similar to a standard RBM:

∇W0 = V̂
(
E
[
H ′ ∣∣ V = V̂

]− E
[
H ′])

∇W1 = V̂∗(1:T−1)

(
E
[
H ′

∗(2:T )

∣∣V = V̂
]− E

[
H ′

∗(2:T )

])
Also, the gradient with respect to tj is

∇tj =

T−1∑
t=1

(
E
[
HjtHj(t+1)

∣∣ V = V̂
]− E

[
HjtHj(t+1)

])
.

The positive terms (the conditional expectations) can all be computed

exactly by first computing the values E[Hjt|V̂ ] and E[HjtHj(t+1)|V̂ ]

with Baum-Welch. To approximate the negative terms, we sample Ṽ

by running two steps of blocked Gibbs sampling, from V̂ to H and
back, and then use the conditional expectations given Ṽ , which is
analogous to CD training for an RBM.

3. THE SEQUENTIAL DEEP BELIEF NETWORK

An L-layer SDBN is formed by stacking multiple layers of SRBMs.
For l = 1 . . . L − 1, the hidden layer at level l is a binary matrix
Hl ∈ {±1}nl×T with weight matrices W l

δ and transition parameters
tl. We define V l ∈ R

nl×T for l = 0 . . . L − 1 to be a matrix of
features at layer l. In case l = 0 (the input), the features are assumed
to be real values that are defined by the user in a task-specific way.
For the hidden layers (l = 1 . . . L − 1), we specify V l = E

[
Hl
]
,

where Pr(Hl|V l−1) is defined as in Eq. (3), using the activation
matrix Al of the lth layer as defined in Eq. (1).

The output {y1 . . . yT } is assumed to be a sequence of integer
labels, with yi ∈ {1 . . . nL} written as a matrix Y ∈ R

nL×T where
Yit = 1 if yt = i, and 0 otherwise. We have weight matrices WL

δ

just as with the hidden layers, and the activation matrix AL is formed
applying Eq. (1) to the features V L−1 of the deepest hidden layer.
However now instead of a vector t of transition parameters, we have a
full matrix U ∈ R

nL×nL . The distribution is written just as Eq. (3):

Pr(Y |V L−1) ∝ exp

(
〈Y,AL〉+

T−1∑
t=1

〈Y∗t, U
LY∗(t+1)〉

)

but there are two important differences. First, UL is not constrained
to be diagonal, as U l is for l < L. Second, while H is an arbitrary
binary matrix, Y is a 0-1 matrix with a single 1 in each column,
so the set of structures that are summed over for normalization is
different. Instead of a set of independent binary Markov sequences,
Pr(Y |V L−1) defines a single Markov sequence over multinomials
with nL values, so we can still efficiently compute the maximizing
assignment and the probability of the correct labels with standard
algorithms. The SDBN structure is illustrated in figure 1(b).

The temporal edges at internal layers of an SDBN can potentially
offer distinct advantages in modeling capacity. Consider, for example,
a CRF that utilizes features with a fixed temporal span over the input.
The only hope to recognize patterns that occur over larger spans is
via the temporal integration at the output CRF layer. A SDBN, by
contrast, has the ability for its hidden units to indicate the presence of
an arbitrarily long temporal pattern, or even properties of the entire
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Fig. 2. Average development set PER of the SDBN and baseline
model over a range of number of layers, nh and δmax.

sequence, owing to the earlier layers’ Baum-Welch stages that can
pass information over an arbitrary long temporal extent.

To train the SDBN, we first pretrain each SRBM layer with CD,
using the expected values of the hidden units at each layer as the input
to the next layer. Then we fine-tune all parameters by approximately

maximizing � = log Pr(Ŷ |V L−1) with stochastic gradient descent,
where the gradient is computed using a procedure similar to error
backpropagation (BP). We omit the derivation of the error gradient for
lack of space, but we note that it can be computed exactly via dynamic
programming in time linear in the size of the network, and is well
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suited for optimized implementation via fast matrix multiplication
routines and/or the use of GPU processors.

4. EXPERIMENTS

We tested the SDBN on the TIMIT phone recognition dataset.3 The
input features were 12th order MFCCs and energy over 25 ms win-
dows, plus the first-order temporal differences, normalized to have
zero mean and unit variance on the training data. The outputs are
sequences of the standard 39-phone set of [9]. In order to model
repeated phones and to get some of the modeling power of subphones,
we divide each phone into two states, and constrain the model to re-
quire traversal through each substate of each phone. The boundaries
between subphones are kept latent during training. We compared the
complete SDBN to a baseline model that uses a sequence classifier
only at the top level, exactly as if tl were constrained to be zero for
l < L.

We compare the models over a range of model depths, half-widths
of the input window δ1max, and numbers of hidden units per frame (in
each hidden layer). All hidden layers for l > 1 use δlmax = 1 Each
configuration was repeated five times with different random seeds.
�2 weight decay (applied after each update and scaled proportionally
with T ) is used for regularization and to prevent saturation of the
hidden units during training. Each stage of training (that is, pre-
training each layer with CD and also joint training of all parameters
with BP) continued until the training criterion (squared reconstruction
error for CD, log-likelihood for BP) failed to improve over five epochs,
at which point the learning rate was annealed linearly to zero over
another five epochs. The initial learning rates, weight decays and
momentum parameters were estimated on a randomly selected 10%
of the training set, which was added back before training the final
model for test results.

The results are summarized in figure 2. It is apparent that using
full sequence information at all layers is beneficial across nearly all
configurations, and the gains are more significant as the number of
hidden layers increases. The results also indicate that the use of an
SDBN renders moot the need for a very wide input window: our best
results are obtained with δ1max = 1, whereas δ1max = 5 or 7 is more
common in related work ([8] [10]).

Our best performing configuration (150 units/frame, 8 layers,
δmax = 1), evaluated on the test set, achieved a PER of 25.2, which
surpasses many recent systems that are highly tailored to the phone-
recognition task ([11] [12] [13] [14] [15] [4] [16]) and approaches
the error of the very best systems. As far as we are aware, the
current state-of-the-art is the exceptional mcRBM model of [10],
with a PER of 20.5. The primary innovation of that work is the use
of the mean-covariance RBM in the input layer, although several
other advanced techniques are used, including forced alignment of
true (three-state) subphones to an HMM baseline model, and more
intensive preprocessing of the input features than we have used. It
also uses far more hidden units per time-frame (2048), entailing a
number of parameters that is several orders of magnitude greater and
therefore much slower training. In future work it would be interesting
to measure the impact of temporal connections in the context of all
of the advanced features present in that work.

Acknowledgments: This research was supported by NSF grant
IIS-0905341. The opinions expressed in this work are those of the
authors and do not necessarily reflect the views of the funding agency.

3We use the standard train/test split for phone recognition experiments:
removing all SA records (identical sentences spoken by different speakers)
from training, and testing on the core test set of 24 speakers.
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