
EFFICIENT SPEAKER SEARCH OVER LARGE POPULATIONS
USING KERNELIZED LOCALITY-SENSITIVE HASHING

Woojay Jeon

Samsung Electronics
Suwon, South Korea

Yan-Ming Cheng

Motorola Solutions
Schaumburg, U.S.A.

ABSTRACT

We propose a novel method of efficiently searching very large pop-
ulations of speakers, tens of thousands or more, using an utterance
comparison model proposed in a previous work. The model allows
much more efficient comparison of utterances compared to the tra-
ditional Gaussian Mixture Model(GMM)-based approach because
of its computational simplicity while maintaining high accuracy.
Furthermore, efficiency can be drastically improved when approxi-
mating searches using kernelized locality-sensitive hashing (KLSH).
From a speaker’s utterance, a set of statistics are extracted according
to the utterance comparison model and converted to a set of hash
key bits. An Approximate Nearest Neighbor search using the Ham-
ming Distance can be done to find candidate matches with the query
speaker, which are then rank-ordered by linearly comparing them
with the query using the utterance comparison model. Compared to
GMM-based speaker identification and some of its variants that have
been proposed to increase its efficiency, the proposed KLSH-based
method is orders of magnitude faster while compromising a negligi-
ble amount of accuracy for sufficiently long query utterances. At a
more fundamental level, we also discuss how our speaker matching
framework differs from the traditional Bayesian decision rule used
for speaker identification.

Index Terms— speaker identification, speaker search, kernel-
ized locality-sensitive hashing, lsh

1. INTRODUCTION

Speaker identification is the classification of a given speaker into
one out of n known speakers. It is well known that Gaussian Mix-
ture Models (GMMs) allow this to be done with high accuracy under
clean recording conditions. When the population n of known speak-
ers is large (at least tens of thousands), however, the amount of com-
putation required to calculate the likelihoods of all n GMMs for a
given speech query can be overwhelming [1]. Various strategies have
been proposed in the past to make this process faster while minimiz-
ing the loss of accuracy, including reducing the number of acoustic
features involved in the GMM decoding [2], approximating the like-
lihood calculations with an approximate cross entropy measure [3],
and using speaker model clusters to hierarchically reduce the search
space [1]. However, the computational gains of these methods are
not enough for population sizes of more than one thousand.

Recently, locality-sensitive hashing (LSH) has been successfully
applied as an elegant framework for highly efficient searches over
large databases of music, text, and images. In particular, kernelized
LSH [4] has been proposed for use with distance measures that are
more general than the Euclidean distance.

In previous work [5], we proposed an utterance comparison
model based on factor analysis and eigenvoices that computes the

probability that any two arbitrary speech utterances originated from
the same speaker, and showed the effectiveness of the model when
used as a distance metric for speaker clustering in a speaker diarizer.
In this paper, we will show that the utterance comparison model
allows very efficient matching of speakers due to its computational
simplicity. Furthermore, we recognize that the utterance comparison
model is also a kernel function, and apply the model in a kernelized
LSH system to achieve highly efficient approximate speaker identi-
fication in matched conditions over large speaker populations with
minimal compensation of accuracy for sufficiently long utterances.
In addition to the fact that the resulting search is orders of magni-
tude faster than traditional speaker identification, it also enjoys all
the benefits of LSH, including good scalability and ease in adapting
to a distributed computing environment.

Although the problem we are attacking is similar to “speaker
identification(ID),” we term our problem “speaker search” to em-
phasize the fact that the matching is done over a large population us-
ing information retrieval techniques with explicit consideration for
approximate matches. Also, the mathematical framework is not the
Bayesian decision framework used in speaker ID, and we will dis-
cuss how the two methods theoretically relate to each other.

2. UTTERANCE COMPARISON MODEL

In this section, we give a brief description of the utterance compari-
son model that was proposed in the previous study [5].

Assume two arbitrary speech utterances, Xa of length A and Xb

of length B, each utterance defined as a sequence of acoustic feature
vectors originating from exactly one speaker.

Xa = {xa,1,xa,2, · · · ,xa,A} , Xb = {xb,1,xb,2, · · · ,xb,B} (1)

We begin by defining the hypothesis H1 thatXa andXb were uttered
by the same speaker. We define the utterance comparison function
as the posterior probability of H1. Assuming we can obtain the pos-
terior P (wi|X) for every speaker wi in the world for any given
utterance X , an exact formula for the probability can be given:

P (H1|Xa, Xb) =
W∑
i=1

P (wi|Xa)P (wi|Xb) (2)

where W is the population of the world. Of course, it is completely
impractical to try to directly solve this equation, so we turn to eigen-
voice theory and factor analysis, which allow us to approximate the
GMM mean “supervector” (the mean vectors for all mixtures stacked
onto a single vector) s of a speaker model as [6]

s = m+ V y, y ∼ N [0, I] (3)

4261978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

where m contains the mean parameters of a universal background
model (UBM), V is an eigenvoice matrix, and y is a speaker fac-
tor vector with a unit Gaussian distribution. Now, if we assumed
each speaker wi is mapped to a unique v-dimensional speaker factor
vector yi, the summation in (2) can be rewritten as

P (H1|Xa, Xb) =

W∑
i=1

P (yi|Xa)P (yi|Xb) (4)

This equation is still impractical, but by breaking it down into Rie-
mann summation form and using probability theory, we can mold it
into the following analytical form [5]:

P (H1|Xa, Xb) ≈
1

W

∫ ∞

−∞

p (y|Xa) p (y|Xb)

p (y)
dy

=
1

W

1

p (Xa)

1

p (Xb)

∫ ∞

−∞

p (Xa|y) p (Xb|y) p (y) dy

(5)

Using factor analysis, we can derive closed-form solutions for p (X)
and p (X|y). For an utterance X with A feature vectors, we have

p (X|y) =

A∏
t=1

p (xt|y) =

A∏
t=1

M∑
k=1

ckN (xt;mk + Vky, Ck)

(6)
where ck , mk, and Ck are the weight, mean vector, and covariance
matrix, respectively, of the k’th Gaussian in the GMM model admit-
ted by y, M is the total number of Gaussians, and Vk is the subma-
trix of the eigenvoice matrix V in (3) that corresponds to the k’th
Gaussian. Since (6) is too difficult to manage analytically, we as-
sume each observation is “generated” by only one Gaussian, i.e.,

p (X|y) =
A∏

t=1

N(xt;mt + Vty, Ct) =
A∏

t=1

N(Vty;xt −mt, Ct)

(7)
where mt, Vt, and Ct are the d × 1 mean vector, d × v eigenvoice
matrix, and d× d covariance matrix pertaining to the Gaussian that
“generated” xt, respectively. There can be a number of ways to
decide which Gaussian to use for each xt. One way is to obtain
the speaker factors for X via maximum likelihood estimation using
known methods [6], then for each xt finding the Gaussian with the
maximum “occupation” probability, argmaxm γm.

Using this simplified form, it is then possible to obtain closed-
form expressions for p (X) and p (X|y), which then result in a
closed-form expression for (5):

P (H1|Xa, Xb) =
1

W

(
|JA| |JB |

|D|

)− 1

2

· exp

[
−
1

2

{
−d

TDd+ dA
TJAdA + dB

TJBdB

}] (8)

where (omitting DB , dB , JB , for which equivalent expressions can
be easily obtained)

DA
−1 =

A∑
t=1

Va,t
TCa,t

−1Va,t , JA =
(
I +DA

−1
)−1

dA =
A∑

t=1

Va,t
TCa,t

−1 (xa,t −ma,t)

D =
(
JA

−1 + JB
−1 − I

)−1

, d = dA + dB

(9)

3. SPEAKER MATCHING USING THE UTTERANCE
COMPARISON MODEL

The utterance comparison equation (8) is, by definition, a likeli-
hood of how two given utterances Xa and Xb are from the same
speaker. Hence, given an utterance Xq from a “query speaker” and a
set {Xt1, Xt2, · · · , XtN} of utterances from a set of corresponding
“target speakers” (or test speakers) {z1, z2, · · · , zN}, we can per-
form a linear search for the best-matching target speaker as follows:

arg max
1≤k≤N

P (H1|Xq , Xtk) (10)

Before we begin such an endeavor, however, it is necessary to
consider how exactly this formulation differs from the well-known
Bayesian decision rule for speaker identification:

arg max
1≤k≤N

P (zk|Xq) = arg max
1≤k≤N

p (Xq | zk)P (zk) (11)

where zk is the k’th target speaker. To see the relation between (10)
and (11), let us rewrite the comparison function in (10) using the
original definition of the utterance comparison model in (2):

P (H1|Xq, Xtk) =
W∑
i=1

P (wi|Xq)P (wi|Xtk) (12)

Note that each speaker wi in (12) is purportedly one of all the speak-
ers in the world, which, in practice, is actually a (much smaller) set of
training speakers (used to train the UBM and eigenvoice parameters
in (9)). In contrast, the speaker zk in (10) and (11) is a test speaker
that, in practice, is not present in the set of training speakers.

Now, if we assume that each test speaker zk also exists in the set
of training speakers such that test speaker zk is the same as training
speaker wk, then we have

P (wi|Xtk) = P (zi|Xtk) = δ (i− k) (13)

This is because we already know that zk generated Xtk and therefore
P (wi|Xtk) must be 1 for i = k. We also know P (wi|Xtk) is 0
for i �= k because any wi �= wk will also satisfy wi �= zk. Applying
(13) in (12), we have

P (H1|Xq , Xtk) = P (zk|Xq) (14)

in which case the matching rule in (10) is now exactly equivalent to
the Bayesian decision rule in (11).

Conceptually speaking, the matching rule in (10) does not as-
sume any knowledge of which speaker in the world produced the test
utterance Xtk, but rather, considers all the possible known speak-
ers in the world using prior distributions of speaker parameters in
a Bayesian framework to compute a match probability. In contrast,
the Bayesian decision rule assumes that the speaker who created Xtk

has a deterministic set of model parameters and does not care about
any speakers in the world that are not part of the set of test speakers.
In principle, the matching rule in (10) does not require the estima-
tion of model parameters of the test speakers, whereas the Bayesian
decision rule in (11) does. One may argue that the computation of
the sufficient statistics in (9) required by the matching rule is a type
of model parameter estimation, but fundamentally these sufficient
statistics are auxiliary variables for strictly computational purposes,
not statistical model parameters for class representation.

4262

4. SPEAKER SEARCH USING KLSH

The matching rule in (10) can be performed fairly quickly because
(8) depends only on the set of statistics JA and dA in (9). The ma-
trices VkCk

−1 and Vk
TCk

−1Vk pertaining to the k’th Gaussian can
be precomputed offline for k = 1, 2, · · · ,M . For each target ut-
terance, we can use ML estimation of the speaker factors using the
method in [6] to obtain a “mixture sequence,” i.e., a sequence of
indices indicating which Gaussian “generated” each feature vector,
and then use the precomputed matrices to quickly compute JA and
dA in (9), which are all that is needed to compute (8). Hence, in
a memory constrained environment, one may discard the utterances
and keep only the JA’s and dA’s. During testing, we do the same
for a given query utterance and then compute the probability in (8),
which can be done much faster than computing GMM output likeli-
hoods. However, this is still an exhaustive linear search, where the
probability must be computed for all target utterances. Assuming the
computation of the probability is done in constant time for each pair
of utterances, the runtime overhead of the search algorithm is O(N)
where N is the number of target speakers. This is unacceptable for
information retrieval from extremely large databases.

4.1. A brief overview of KLSH

Locality-Sensitive Hashing (LSH) searches a large database effi-
ciently by reducing the search space via a hash function that projects
each data item to a set of bits. Each target vector in the database of
size N is mapped to a b-bit vector where b � N , called a hash key.
The same is done for a given query vector q. Similar vectors tend
to be mapped to similar hash keys, so only those targets that were
mapped to the same (or approximately the same) hash key as the
query need to be linearly compared with the query. LSH methods for
Euclidean and inner-product distances have already been developed
and applied. More recently, kernelized LSH [4] was proposed where
any distance metric that qualifies as a kernel can be used without
knowledge of the embedding function φ(X):

κ (Xa, Xb) = φ(Xa)
Tφ (Xb) (15)

To perform KLSH [4], we first randomly choose p target data points
to create a p × p kernel matrix K, where each element Ki,j =
κ(Xi, Xj). We then construct b hash functions, hi (φ (X)) where
1 ≤ i ≤ b. Each hi is constructed via the following steps [4]:

1. Select t indices at random from [1, · · · , p] to form the p × 1
vector eS,i containing ones at the locations corresponding to
the t indices and zeros elsewhere.

2. Form wi = K−1/2
(

1

t
eS,i −

1

p
e
)

where e is a vector of 1’s.

3. hi (φ (X)) = sign
{∑

j wi (j)κ (X,Xj)
}

The b hash functions map every vector to a bit sequence of length
b, which is the vector’s hash key. In some cases where b is very long
and the hash table is sparsely populated, hash collisions may be very
few or not even exist. In such a case, Approximate Nearest Neighbor
(ANN) searches must be done to also visit hash bins with keys that
are close to the query hash key in terms of the Hamming Distance.

4.2. Speaker search using KLSH

It is already well-known that equation (5) is also a kernel [7]. Hence,
to perform the search in (10) more efficiently, we can simply replace
k(Xa, Xb) in the KLSH algorithm above with our model (8). Two

Table 1. MRR and classification rate for varying length l of voiced
parts of query utterances (b = 300, p = 300, t = 30, e = 80).
LINH=linear Hamming Distance search; LIN=linear search using
the kernel function.

l (seconds) 4 6 10 20 30 60

KLSH
MRR 0.774 0.830 0.877 0.925 0.952 0.983
Rate 0.765 0.825 0.876 0.924 0.952 0.983

LINH
MRR 0.957 0.982 0.992 0.997 0.999 0.999
Rate 0.938 0.972 0.988 0.996 0.998 0.999

LIN
MRR 0.957 0.982 0.992 0.997 0.999 0.999
Rate 0.938 0.972 0.988 0.996 0.998 0.999

Table 2. MRR and classification rate for varying number of hash
key bits b (l = 60, p = 300, t = 30, e = 80)

b 50 150 250 300

KLSH
MRR 0.922 0.947 0.971 0.983
Rate 0.922 0.947 0.971 0.983

LINH
MRR 0.999 0.999 0.999 0.999
Rate 0.999 0.999 0.999 0.999

types of searches are possible. One is also a linear search, but us-
ing the Hamming Distance on the query and target hash keys instead
of using the utterance comparison equation (8). The other is the full
KLSH search where ANN is used to look up the query’s neighboring
keys in the hash table to find an approximate set of matches which
are then re-ranked by linear comparison. For our implementation,
we used the ANN algorithm in [8]. This algorithm requires choosing
a set of random permutations of the hash key bits and maintaining
a sorted order of the target hash keys according to each permuta-
tion. For a given query hash key, each permutation is performed on
it and a binary search of the permuted query hash key is done on the
corresponding sorted order of target hash keys. By examining the
neighboring target hash keys of the binary search result for all such
permutations, an approximate set of nearest hash keys according to
some set Hamming distance range can be efficiently obtained. The
greater the number of permutations, the more target data items vis-
ited, and therefore the closer the ANN is to exhaustive linear search.

5. EXPERIMENT

We obtained 9,422 distinct speakers from the SPEECON database
for 17 languages. From this pool, we set aside 1,500 speakers as
training data to obtain a UBM with 256 Gaussian components, and
a set of 20 eigenvoices via Principal Component Analysis(PCA) on
MAP-adapted (mean only) speaker-dependent models. The remain-
ing 7,922 speakers were used as test data. The set of speech utter-
ances from each test speaker was split into a query utterance set and
a target utterance set with no overlap (all query utterances and tar-
get utterances were distinct). The task was to iterate over all 7,922
queries to see how well they matched up with their corresponding
targets. The acoustic features were 12 MFCC coefficients with en-
ergy and delta coefficients, resulting in a total 26 features, and a
harmonicity-based Voice Activity Detector was used to retain only
voiced frames. The objective of this work was to test search effi-
ciency and effectiveness under matched conditions, so only close-
talk microphone recordings were used for all speech utterances.

To measure search performance, we use the Mean Reciprocal
Rank (MRR), which is defined as 1

N

∑N
i=1

1/ri where N is the

4263

number of queries and ri is the rank of the correct target in the list of
returned results for the i’th query. We also compute the traditional
classification rate (or “top-1 rate”), 1

N

∑N
i=1

δ(ri − 1). Tab.1 shows
the MRR and classification rate from three types of searches – linear
search using our kernel function (8) (LIN), linear search using the
Hamming Distance on the query and target hash keys (LINH), and
KLSH using our kernel (8) and the aforementioned ANN algorithm
– for varying lengths l (seconds) of the voiced parts of the query
while the KLSH parameters b, p, t (explained in Sec.4.1), and e (the
number of permutations in the ANN) remain fixed. While LIN and
LINH are highly accurate even for queries as short as 4 seconds, it is
evident that the KLSH takes a performance hit because of the higher
mismatch between query and target for short queries, resulting in a
higher miss rate in the ANN. Note, however, that we can always use
a larger number of bit permutations (see our discussion regarding
Tab.3) if we wish to make the KLSH approach LINH. Also worth
mentioning is that the MRR and classification rate tend to be identi-
cal when using KLSH. This is because KLSH-based search tends to
be a “hit-or-miss” affair where the correct target either appears at the
top of the result list or does not appear at all, because of the random-
ness inherent in the approximate nearest neighbor mapping. In this
case, we have either ri = 0 or ri ≈ ∞, which results in the MRR
being equal to the classification rate. Note that we did not perform
the same experiment using GMM’s, simply because it would take an
impossibly long time to do so (see our discussion on Tab.4).

Tab.2 shows the MRR for KLSH and LINH for a varying num-
ber of hash key bits. For l = 60 (seconds), accurate search can
already be done with only 50 bits. As the length decreases, however,
more bits are expected to be needed. Tab.3 illustrates the depen-
dence of KLSH on the accuracy and speed of the ANN. The average
search time per query in this table represents the time spent on search
only, not the time spent on extracting the query utterance statistics
(9) (about 2.75s for a voiced length of 10 seconds). All times were
measured by running searches on a single 3.2GHz CPU core.

Finally, in Tab.4, we make a comparison between the average
search time per query, with a fixed query length 10 seconds. The
time for the GMM-based speaker ID is the time purely spent on
computing the likelihoods to carry out the Bayesian decision rule
(assuming uniform priors) arg max

1≤k≤N
p (Xq |λk) where λk is the

set of GMM parameters (MAP-adapted from UBM) of the k’th tar-
get utterance Xtk . The time spent on computing p (Xq |λk) for all
N = 7922 target models is extrapolated from measurements on a
smaller set of data (based on this extrapolation, one can see that
the entire experiment using all queries would take about 566 days
on a single CPU core if we were to actually attempt it). The times
for LIN, LINH, and KLSH include the time spent on extracting the
query’s statistics in (9) (note that the time consumed by the KLSH
search itself is independent of the query length). It is evident that
the KLSH-based method is orders of magnitude faster than the base-
line GMM. Other studies [2, 3, 1] reported speed-up rates as high
as 310 compared to the GMM baseline, which is much lower than
that achieved in the proposed system. Furthermore, the number of
speakers in the experiments conducted in these studies were only
in the hundreds, not thousands. To the best of our knowledge, no
other competing method experimented with a speaker set as large as
the one used in this paper. Although LINH is slower than LIN in
this experiment, for lower numbers of hash key bits it is expected to
be faster because the Hamming Distance is easier to compute than
the kernel function. Also, although we used 10-second queries for
Tab.4, the KLSH speed-up ratio is roughly the same for longer or
shorter queries, since both GMM computation time and speaker fac-

Table 3. MRR, classification rate, and average search time (exclud-
ing computation of utterance statistics) per query of KLSH for vary-
ing number of bit permutations e (l=60, b=300, p=300, t= 30)

e 10 20 40 60 80
MRR 0.868 0.937 0.969 0.980 0.983
Rate 0.868 0.937 0.969 0.979 0.983

Time(s) 0.186 0.211 0.259 0.298 0.337

Table 4. Average search time per query (l = 10, b = 300, p = 300,
t = 30, e = 80) on database of 7,922 speakers. For LIN, LINH, and
KLSH, time includes 2.75s average time spent on extracting query
utterance statistics. *Time for GMM is extrapolated from measure-
ments on a smaller set of data.

GMM LIN LINH KLSH
Avg. Time(s) 6176* 6.778 8.782 3.093

Speed Improvement 1× 911× 703× 1997×

tor ML estimation time (which comprises most of the time required
by KLSH in Tab.4) are linearly proportional to the query length.

6. CONCLUSION

In this paper, we proposed a method of efficiently searching large
populations of speakers using kernelized LSH with an utterance
comparison model proposed in previous work. In an experiment
with a database of 7,922 speakers, we were able to achieve search
speeds that were orders of magnitude higher than the traditional
GMM-based method with negligible loss of accuracy for sufficiently
long query lengths. Even without KLSH, a linear comparison over
the database using our kernel proved to be much faster than GMMs
and highly accurate for very short queries. Further studies will
be done on how to make the KLSH more robust, particularly to
mismatched conditions where environmental noise is present.

7. REFERENCES

[1] V. R. Apsingekar and P. L. De Leon, “Speaker model clustering
for efficient speaker identification in large population applica-
tions,” IEEE Trans. Audio, Speech, and Language Processing,
vol. 17, no. 4, pp. 848–853, May 2009.

[2] T. Kinnunen, E. Karpov, and P. Franti, “Real-time speaker iden-
tification and verification,” IEEE Trans. Audio, Speech, and
Language Processing, vol. 14, no. 1, pp. 277–288, 2006.

[3] H. Aronowitz and D. Burshtein, “Efficient speaker recognition
using approximated cross entropy (ace),” IEEE Trans. ASLP,
vol. 15, no. 7, pp. 2033–2043, 2007.

[4] B. Kulis and K. Grauman, “Kernelized locality-sensitive hash-
ing for scalable image search,” in IEEE Proc. 12th Int. Conf. on
Computer Vision, Sept. 2009.

[5] W. Jeon, C. Ma, and D. Macho, “An utterance comparison
model for speaker clustering using factor analysis,” in IEEE
Int. Conf. on Acoustics, Signal and Speech Proc., 2011.

[6] R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid
speaker adaptation in eigenvoice space,” IEEE Trans. Audio,
Speech, and Language Processing, vol. 8, no. 6, Nov. 2000.

[7] C. M. Bishop, Pattern Recognition and Machine Learning, pp.
291–299, Springer, 2006.

[8] M. S. Charikar, “Similarity estimation techniques from round-
ing algorithms,” in Proc. ACM Symposium on Theory of Com-
puting, 2002, pp. 380–388.

4264

