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ABSTRACT 
We present a multicondition training strategy for Gaussian 
Probabilistic Linear Discriminant Analysis (PLDA) modeling of i-
vector representations of speech utterances. The proposed 
approach uses a multicondition set to train a collection of 
individual subsystems that are tuned to specific conditions. A final 
verification score is obtained by combining the individual scores 
according to the posterior probability of each condition given the 
trial at hand. The performance of our approach is demonstrated on 
a subset of the interview data of NIST SRE 2010. Significant 
robustness to the adverse noise and reverberation conditions 
included in the multicondition training set are obtained. The 
system is also shown to generalize to unseen conditions. 
Index Terms: Robust speaker recognition, i-vector, multicondition 
training, PLDA. 

1. INTRODUCTION 
Speaker recognition systems built in the lab with clean speech 
recordings can provide very high accuracies when tested on clean 
conditions. However, the performance rapidly degrades when the 
systems are used in the real world where channel/handset 
mismatch as well as environmental noise and reverberation are 
present [1]. The recently developed paradigm of i-vector extraction 
[2] provides an elegant way to obtain a low dimensional fixed-
length representation of an entire speech utterance. The low-
dimensional nature of the i-vector space facilitates the use of large 
amounts of data to remove/attenuate the effects of adverse 
conditions. Due to the emphasis that the series of NIST Speaker 
Recognition Evaluations [3] has placed on channel/handset 
mismatch, most of the focus on modeling i-vectors has been 
directed towards robustness to channel/handset mismatch. In this 
paper we focus on the use of generative models of i-vectors that 
are also robust to noise and reverberation.  

Particularly, we are interested in situations where the 
recognition system is going to be deployed in an environment for 
which we can anticipate the most likely types of distortions that the 
system is going to be subjected to. Examples of this include 
systems deployed in cars, helicopters, office environments, etc. For 
these scenarios, a simple approach is to collect samples from the 
expected conditions (e.g., car noise at different speeds) and then 
create a multicondition dataset by electronically distorting the 
original clean data. This new augmented dataset can be used to 
train robust back-ends; as in [1] where multicondition training was 
successfully applied to a classical GMM-UBM architecture. In this 
paper we propose the use of multicondition training in the more 
advanced speaker representation based on i-vectors. 

In the remainder of this paper we present a formal description 
of the proposed recognition architecture and analyze its behavior 
on a multicondition set created from a portion of NIST SRE 2010. 

2. MULTICONDITION RECOGNITION SYSTEMS 
All the multicondition training approaches proposed in this paper 
are based on a baseline state-of-the-art architecture that uses an i-
vector extractor front-end followed by a Gaussian probabilistic 
generative model back-end [4].  In particular, as shown in Figure 1, 
we consider an extension in which the final verification score is a 
convex mixture of the scores produced by a collection of  
susbsytems. Moreover, each of these subsystems is trained 
according to a multicondition training scheme.  

In the following we provide the details of each of the three 
basic building blocks of our recognition system, namely: i-vector 
extraction, modeling and score computation. 

2.1. I-vector extraction 
An i-vector extractor [2] maps a sequence of cepstral coefficients 
from a speech utterance into a low-dimensional fixed-size 
representation . This is accomplished by projecting a 
supervector of Baum-Welch statistics―collected with a Gaussian 
Mixture Model denoted as Universal Background Model (UBM) 
―into a low-dimensional subspace (i-vector space). The projection 
is learned from a large collection of data using a ML criterion. 

2.2. Multicondition Gaussian PLDA (G-PLDA) modeling 
The basic G-PLDA model ignores the abovementioned i-vector 
extraction process and considers the i-vector as an observed 
variable following the generative model [4]: 

 (1) 
In particular,  is a global offset; the columns of  provide a basis 
for the speaker-specific subspace (eigenvoices);  is a latent 
identity vector having a standard normal distribution; and  is a 
noise term assumed to be Gaussian with zero mean and full 
covariance . Maximum Likelihood point estimates of the model 
parameters  are obtained from a large collection of 
development data using an EM algorithm as in [5]. 

In a multicondition setup, we have access to  versions of 
the development data. Therefore, we can estimate a collection of 
hyperparameters . In the following, we present three 
alternatives to accomplish this. 

 
Figure 1. Mixture of  multicondition verification systems. 
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2.2.1. Independent modeling 

The easiest way to take advantage of the multicondition setup is to 
consider each condition  independent of each other and obtain 
hyperparameters as in the basic G-PLDA model [4]. 

2.2.2. Tied modeling 

Another alternative, denoted as Tied-PLDA [5], assumes that for a 
subset of conditions (or even all conditions) the i-vectors of 
speaker  are generated using the same latent identity variable. 
However, the hyperparameters of each condition are different. This 
results in a new generative model of the form: 

 (2) 
where ,   
and . Note that the latent identity variable  is the 
same across all conditions (i.e., it ties the hyperparameters). By 
constraining the latent identity to be the same, the hyperparameter 
sets are not independent of each other and can leverage the data 
from all the tied conditions to obtain better estimates. 

2.2.3. Pooled modeling 

This approach assumes that a subset of (or all) conditions were 
generated from the same set of hyperparameters. Therefore, by 
simply pooling the data of those conditions together the 
hyperparameter learning stage is the same as for the basic G-PLDA 
model [5]. In this approach, sharing data across conditions is 
explicitly controlled by the pooling mechanism. 

2.3. Verification score 
As shown in Figure 1, a final verification score is obtained as a 
convex mixture of a collection of  scores  according to the 
weights . The multicondition training scenario assumes that a 
speaker model is represented by  i-vectors . Moreover, given 
a query test segment , a score for each subsystem  can be 
computed as a likelihood ratio of two Gaussian distributions [5]:   

 (3) 

where  and  represent the same- and different-speaker 
hypothesis  respectively. The mean and covariance of these two 
distributions are defined by the hyperparameters . 
Also, the mixing weights  correspond to the posterior 
probability of each condition given the test i-vector and regardless 
of the claimed identity. They are therefore obtained by Bayes 
theorem as: 

 (4) 

The prior probability of condition  is denoted by . In all our 
experiments we consider each condition equally probable.  

3. EXPERIMENTS 
3.1. Experimental setup 
All our experiments were conducted on the male part of condition 
2 of the extended NIST SRE 2010 evaluation (i.e., interview data). 
Throughout the experiments we refer to this set as evaluation data. 
This subset comprises 1,108 models and 3,328 test segments from 
which 6,932 target trials and 1,215,586 non-target trials were 
obtained. Verification performance is reported in terms of Equal 
Error Rate (EER). We have used 400 dimensional i-vectors in all 
experiments. They were computed using a gender-dependent i-
vector extractor trained from NIST SRE 04, 05, 06, 08-followup, 

Switchboard and Fisher. The necessary Baum-Welch sufficient 
statistics were collected using a diagonal-covariance gender-
dependent UBM with 2048 mixtures trained on the same data. A 
subset of these data comprising 907 male speakers with a total of 
10,695 files was used to train the hyperparameters of the PLDA 
models. We refer to this set as development data. 

All speech files were parameterized using 38 MFCCs (i.e., 
19 base coefficients without c0 plus deltas) obtained every 10 ms 
from a 20 ms Hamming window. Mean and variance normalization 
was applied to the entire utterances (i.e., not short time). 

3.2. Multicondition data generation 
In order to create a set for multicondition training and testing, 16 
copies of each file from the evaluation and development sets were 
created by electronically adding 4 different types of noises: white, 
babble, car and helicopter at 20 dB, 10 dB, 6 dB and 0 dB SNRs. 
Additionally, 3 other copies with reverberation were created by 
convolving the original files with simulated impulse responses 
from rooms with reverberation times (i.e., RT30) of 100, 300 and 
500 ms. Subsequently, i-vectors were computed for each file in the 
development and evaluation sets (i.e., original plus 19 corrupted 
versions). Note that neither the UBM nor the i-vector extractor 
were exposed to the noisy conditions since they were trained only 
on the original “clean” data. 

During the experiments, the white noise subset was set aside 
to assess the behavior of our system to unanticipated conditions. 
Hence, the multicondition training set for our experiments was 
comprised of the clean data along with the other three noisy 
versions (babble, car, helicopter) and reverberation; a total of 

 conditions. For evaluation, we had access to the corrupted 
test segment in the expected deployment conditions (i.e., the 
training conditions) plus the unanticipated condition involving 
white noise. 

3.3. I-vector length normalization 
In [4] it was shown that the current strategy (e.g., [2]) used to 
extract i-vectors induces a severe mismatch between the length of 
the development and evaluation i-vectors. This was identified as a 
major source of non-Gaussian behavior. Moreover, a length 
normalization was proposed to reduce this mismatch and allow for 
effective Gaussian modeling. Here we further extend those 
observations by looking at the distribution of i-vector lengths of 
the evaluation data as a function of the SNR. Figure 2 shows the 
results of fitting Gaussians to the length distributions for different 
SNRs of babble noise. As a general trend we can observe that the 
lower the SNR the smaller the length and the dispersion of the 
data. The same relative trend happens for the development data and 

 
Figure 2. Gaussian fits to the distributions of i-vector lengths of the 

evaluation data for different SNRs in babble noise. 
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other types of noise. Thus, when considering a collection of data 
with a wide range of SNRs, either heavy-tailed modeling is used 
(e.g., [6]) or Gaussian modeling must be preceded by a 
compensation technique such as length normalization. For this 
reason, all the experiments in this paper were carried out using 
length-normalized i-vectors.  

3.4. Tying structure 
In this section we explore the effects of different tying/pooling 
structures in the verification performance. That is, if we have 
development data for  conditions, we want to know how to best 
tie/pool them together to maximize performance. The reason to 
explore this is that tying/pooling conditions reflects our belief of 
how the data was generated. Note that the larger the number of 
conditions tied/pooled together, the more data we have to estimate 
the hyper-parameters. However, this comes at the risk of stronger 
assumptions about the data generating process (which may not be 
true and therefore can harm the performance).  

Table 1 shows the verification performance averaged across 
babble, car and helicopter noise using three different tying 
structures (same trends are true for pooling approach). In all three 
structures, the performance was always better when individualized 
global offset hyper-parameters were used (i.e., no tying/pooling of 
the data for the ). Therefore, the difference among the 
three structures came from the way the speaker and channel 
subspaces were treated. In particular, for the “Pair” structure, a 
pairwise tying of each noisy condition with the clean data was 
used. For the “Block” case, the blocks of conditions from the same 
noise type were tied together and also with the clean data. Finally, 
the “All” structure tied together all 16 conditions, thus a unique 
pair of ( ) was computed and only the offsets  
were different.  

The results indicate that the pairwise structure is the best for 
the high SNR conditions and very close to the “All” structure for 
the lower SNRs. Using a unique pair of ( ) seems 
detrimental for the clean and 20 dB conditions. The “Block” 
structure is still competitive but not as good as the other two. Even 
though the number of structures explored was not exhaustive, the 
results presented here provide a sense of the aforementioned 
tradeoff between leveraging large amounts of data and imposing 
suboptimal assumptions on the data. 

3.5. Performance analysis 
Figure 3 shows the performance of three multicondition training 
approaches―along with a baseline system trained only on clean 
data―for different noise types and SNRs. Also, the oracle 
counterparts are depicted (i.e., oracle selection of training 

condition that matches the test segment instead of using posterior 
probabilities). Only the results on the expected deployment 
conditions are presented here (deferring the analysis in 
unanticipated conditions to section 3.7). The baseline system 
performs very well in the clean condition (1.43% EER). However, 
the performance degrades rather quickly with small amounts of 
noise and reverberation (e.g., at 10dB the performance is between 
6 and 8 times worse than in clean). The improved performance of 
the independently trained system (i.e., not tying or pooling) with 
respect to the baseline is solely due to the reduction of the 
mismatch between training and testing. Moreover, the performance 
improvement of the Tied- and Pooled-PLDA approaches―which 
are based on the pairwise tying/pooling structure described in the 
previous section―is much better than the one obtained by 
independently training  PLDA systems. Specifically, in the Tied-
PLDA approach, forcing the latent identity variable to be the same 
(pairwise) for clean and each degraded condition allows the system 
to leverage the clean data to obtain better estimates of the speaker 
and channel subspaces in noisy situations. The Pooled-PLDA 
system also exhibits an impressive performance but it is slightly 
worse than the Tied-PLDA approach for the high SNRs. In 
summary, when using Tied- and Pooled-PLDA training for the 
anticipated noisy conditions, the performance improvement is 
between 2.5 and 3 times better than the baseline system and about 
1.5 times better than the independent multicondition training. 

3.6. Score combination based on posteriors 
As described in section 2.3, the final score for a verification trial is 
obtained by combining the scores of each sub-system based on the 
posterior probability of the condition given the trial at hand. 
Therefore, the success of this approach heavily relies on the quality 
of these mixing coefficients. 

Figure 4 depicts the average behavior of these coefficients 
for the pairwise Tied-PLDA approach. In particular, each column 
corresponds to a 16-dimensional vector of posterior probabilities 
(averaged across more than 1.2 million trials). Also, the magnitude 
of the coefficients―which adds up to one for each column―is 
proportional to the side of the gray squares. For example, the first 
column indicates that on average the scores for trials involving 
clean test segments are produced by an equal mixture of the scores 

 
Figure 3.  Performance of multicondition training approaches for different noise types and SNRs. (See section 3.5 for details) 

Tying 
structure 

EER (%) averaged across test segment noise types 
Clean 20 dB 10 dB 6 dB 0dB 

Pair 1.32 1.78 2.85 4.32 9.23 
Block 1.66 1.96 3.00 4.43 9.46 
All 1.76 1.91 2.80 4.23 9.08 

Table 1. Speaker verification performance averaged across 
babble, car and helicopter noise for 3 different tying structures. 
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form the clean and 100 ms reverberation sub-systems. In this 
particular case, the (averaged) equal weights are mostly due to the 
fact that 50% of the time either one of them is responsible for 
100% of the final score (i.e., posterior equal 1). Thus, the 
posteriors are very sharp. For other cases, the actual mixing mass is 
spread across two or at most three sub-systems. However, the 
diagonal dominance of the posterior probability matrix (left part of 
Figure 4) along with its sparsity is a clear indication of the correct 
behavior of the proposed sub-system selection mechanism. 

A more direct way to assess the quality of the selection 
mechanism is to compare the verification performance of the actual 
system with that of a system based on oracle selection (i.e., final 
score comes from the sub-system matching the test segment 
condition). Figure 3 facilitates this comparison. Particularly, the 
performance of the oracle and actual systems is almost 
indistinguishable. The individual multicondition approach tends to 
be a little bit worse than its oracle counterpart. However, for the 
Tied- and Pooled-PLDA cases the actual performance is always 
equal or even better than that of the oracle selection. As an 
example, for the clean condition, the Tied-PLDA system produces 
an EER of 1.32% whereas the oracle performance is 1.43%. 

3.7. Unanticipated conditions 
So far we have assessed the performance of multicondition training 
when the testing condition matches one of the development 
conditions. However, it is not realistic to assume that we will be 
able to anticipate all the potential situations that the system is 
going to encounter during deployment. Hence, it is important to 
know how the system is going to behave in those situations. 
Ideally, the system would approximate the test condition with the 
closest development condition and produce a score no worse than 
what the baseline system would produce. Therefore, the system 
will perform much better than the baseline in the expected 
conditions and not worse (or better) in unanticipated scenarios. 
This is exactly how our system behaves. The last four columns of 
Figure 4 show the average posteriors for test segments corrupted 

with white noise (recall that white noise was not included in the 
development set). As expected, the system selects the closest 
candidate (i.e., car noise resembles white noise much better than 
the remaining competitors). Also, the posteriors seem to 
concentrate around the correct SNR levels. More importantly, as 
shown in Table 2, the performance of any of the multicondition 
approaches outperforms the baseline system; with Tied- and 
Pooled-PLDA producing a significantly superior performance over 
the independent approach. However, the relative improvement for 
this unanticipated condition is not as good as the one observed for 
the expected conditions. 

4. CONCLUSIONS 
A multicondition training strategy for Gaussian PLDA modeling of 
i-vector representations of speech utterances was presented. Three 
different multicondition strategies were evaluated on a subset of 
the NIST SRE 2010 database. The Tied- and Pooled-PLDA 
approaches were shown to be superior to the independent training 
of the condition-dependent subsystems. The key to this superior 
performance was attributed to the ability to leverage data from 
multiple conditions to improve the estimation of the PLDA 
hyperparameters. For the noisy conditions included in the 
development set, the performance improvement of Tied- and 
Pooled-PLDA was between 2.5 and 3 times better than that of a 
baseline system trained only on clean data and about 1.5 times 
better than the independent multicondition training. The posterior 
probabilities used to combine the individual scores into a final 
verification score were shown to be quite sparse and localized 
around the testing condition at hand. Also, the system was tested 
against unseen noise conditions and the performance of the 
multicondition strategies was better than that of the baseline 
system. Finally, since the performance of the Tied- and Pooled-
PLDA systems was very similar, the lower number of parameters 
of the Pooled-PLDA system renders it more appealing. 
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Figure 4. Average posterior probabilities for pairwise Tied-PLDA 

EER (%) 
White noise SNR 

20 dB 10 dB 6 dB 0 dB 
Baseline 3.62 15.08 23.06 35.98 
Indep. Multi. 3.29 12.56 19.01 32.37 
Tied Multi. 2.92 10.76 16.46 28.13 
Pooled Multi. 3.08 9.64 15.48 27.79 

Table 2. Performance in unanticipated white noise 
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