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ABSTRACT
This work addresses the problem of speaker verification

where additive noise is present in the enrollment and testing

utterances. We show how the current state-of-the-art frame-

work can be effectively used to mitigate this effect. We first

look at the degradation a standard speaker verification sys-

tem is subjected to when presented with noisy speech wave-

forms. We designed and generated a corpus with noisy condi-

tions, based on the NIST SRE 2008 and 2010 data, built using

open-source tools and freely available noise samples. We then

show how adding noisy training data in the current i-vector-

based approach followed by probabilistic linear discriminant

analysis (PLDA) can bring significant gains in accuracy at

various signal-to-noise ratio (SNR) levels. We demonstrate

that this improvement is not feature-specific as we present

positive results for three disparate sets of features: standard

mel frequency cepstral coefficients, prosodic polynomial co-

efficients and maximum likelihood linear regression (MLLR)

transforms.

Index Terms— Speaker Recognition, noise, robustness,

i-vector, PLDA

1. INTRODUCTION

Recently, the speaker verification community has seen a sig-

nificant increase in accuracy from the successful application

of the factor analysis framework. In this framework, the i-

vector extractor paradigm [1] along with a Bayesian back end

such as probabilistic linear discriminant analysis, has become

the state of the art in speaker verification systems. An i-vector

extractor is generally defined as a transformation where one

speech utterance with variable duration is projected into a sin-

gle low-dimensional vector, typically of a few hundred com-

ponents.

The low rank of the i-vector itself opened up new pos-

sibilities for the application of advanced machine learning

paradigms that would have been otherwise too costly at the
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very high dimensionality most systems relied on earlier. Prob-

abilistic linear discriminant analysis (PLDA) [2, 3] has been

shown to be one of the most powerful techniques to produce

a good verification score. In this model, each i-vector is sep-

arated into a speaker and a channel part, analogous to the for-

mulation in the Joint Factor Analysis framework [4], PLDA is

a probabilistic model modeling speaker and intersession vari-

ability in the space of i-vectors.

This work is focused on the robustness of speaker verifi-

cation systems under noisy conditions, and how the proposed

paradigm can help compensate for the observed degradation.

Although the current state-of-the-art speaker recognition sys-

tems achieve very high performance on clean data, noisy con-

ditions have been rarely experimented with. With the advance

of technology, and the widespread use of mobile services, the

need for noise-robust speaker recognition is on the rise. A lot

of prior work on noise robustness focused on designing new

robust acoustic features to mitigate noise degradation where

the standard Mel Frequency Cepstrum Coefficients (MFCC)

tend to fail [5, 6]. In the same vein, system combination using

different acoustic features has been shown to improve accu-

racy under noisy conditions [7]. On the modeling side, degra-

dation due to noisy data was studied on several state-of-the-

art systems, including Gaussian mixture models (GMM) and

MLLR [8].

2. NOISY SPEAKER RECOGNITION CORPUS

Data available from NIST SRE evaluations cannot be used

to address noise robustness since it does not contain signals

with low-enough SNR levels. Hence, in order to assess our

systems’ robustness to noise, we designed a corpus by adding

real noise data to existing NIST data. (For a detailed descrip-

tion of the corpus, see [9].)

2.1. Original clean corpus

The noisy speech corpus is created by adding real noise (i.e.,

recorded noise samples) to data extracted from the SRE10

and SRE08 corpora. Only clean microphone data is selected

from those corpora. Specifically, microphone 2 (lavalier mi-

crophones) waveforms are chosen from both interview and

telephone conversations. Only SRE08 data is used for train-
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ing, while SRE10 data and a small portion of SRE08 data is

used to create trials (enrollment and testing). The clean trials

are created as the cross-product of the sessions in the second

set (except for same-session trials, which are discarded). That

is, all possible target and impostor samples are created for the

selected list of sessions

2.2. Additive noise

We selected 15 cocktail noise samples from the free sound

repository Freesound.org [10]. These noise samples were

collected in bars, cafeterias, offices, and airports. We in-

spected the samples to remove single-speaker foreground

speech sounds and artifacts (like clicks, etc.). The noise sam-

ples vary in duration from 1 to 13 minutes.

The noise samples are labeled 1 to 15, and we added

these 15 noise samples to the full waveforms from SRE08

and SRE10 at 20, 15, and 8 dB SNR ratios, using the publicly

available tool called FaNT [11]. After noise addition we ex-

tracted the speech regions obtained from clean speech. This

was done as a way to assess the performance of the speaker

recognition systems independent of the quality of the voice

activity detector (VAD) under noise. Hence, our results under

noise can be interpreted as a best-case scenario that could be

obtained in a real system if a very good VAD system trained

for speech detection under noise were used.

2.3. Noisy corpus

In the noisy corpus, different noises are added to training, en-

rollment, and test samples. This avoids the highly optimistic

matched case in which the same type of noise is observed

when training the systems as in enrollment and/or test sam-

ples. Noises are separated into three disjoint sets: noise sam-

ples 1 through 4 used on enrollment signals, noise samples

5 through 8 used on test signals, noise samples 9 through 15

used on training signals. Within these sets, noise samples are

added to the clean data randomly.

The noisy trials are created following the clean trial defi-

nition, where the clean enrollment sample has been degraded

by one of the enrollment noises (at a certain SNR level) and

the clean test sample has been degraded by one of the test

noises (at a possibly different SNR level). Table 1 shows the

number of target and impostor trials in all evaluation condi-

tions of the noisy corpus.

3. BASELINE SYSTEM DESCRIPTION

For all the system in this work, fixed-length vectors are first

extracted from feature sequences as a low-dimensional repre-

sentations of speech segments. For each verification trial, the

low-dimensional vectors are compared by means of PLDA [2]

model to obtain verification scores. For two of our system, the

Table 1. Number of target and impostor samples in each sub-
set of the noisy corpus. The sets with matched SNR are 8 dB
vs. 8 dB, 15 dB vs. 15 dB, 20 dB vs. 20 dB and clean vs.
clean. The sets with mismatched SNR are created by match-
ing data with SNR level of X for training and Y for testing and
conversely. The all vs. all set is created by combining all of
these sets.

Eval. condition # of Targets # of Impostors

sets with matched SNR 2450 592,508

sets with mismatched SNR 4900 1,185,016

all vs. all 39,200 9,480,128

low-dimensional speech representations are i-vector as pro-

posed in [1], which are MAP point estimate of a latent vectors

adapting GMM to an feature sequence of a given segment.

More specifically, GMM mean supervector is constrained to

live in a low-dimensional subspace and i-vectors are latent

variables defining coordinates in this subspace. In the third

system studied in the work, the i-vector like low-dimensional

representation is derived from set of MLLR transformations

adapting speech recognition system to speaker of a given

speech segment [12]. In this work, all systems use linear dis-

criminant analysis (LDA) and length normalization [13] be-

fore the PLDA back end. In PLDA, the speaker variability is

described by a full rank matrix of eigenvoice bases. The train-

ing data for the LDA and PLDA models in all systems is the

same and includes NIST SRE 04, 05, 06 and also data from

Switchboard and Fisher, where multiple sessions are available

per speaker. The i-vector extraction process with the PLDA

back end for the different front ends is described below.

3.1. Cepstral i-vector system

In this front end, 19 cepstral coefficients and the energy

with appended deltas and double deltas are used. A gender-

dependent system with 2048-component diagonal covariance

universal background models (UBM) trained on NIST SRE

04 and 05 telephone data, the i-vector extractor was trained

on NIST SRE 04,05,06, Switchboard and Fisher, with i-vector

dimensionality of 600. The i-vector dimension is further re-

duced to 150 by LDA.

3.2. Prosodic i-vector system

The prosodic features include 6th-order Legendre polynomial

coefficients estimated from the energy and pitch tracks over

regions 20 frames long with 5-frame shift. These 12 coef-

ficients and the number of voiced frames in the region form

the feature vector for each region. (For a detailed descrip-

tion of these features, see [14].) A gender-dependent 1024-

component full covariance UBM and a 300-dimensional i-

vector extractor are trained on the same data as the cepstral

i-vector front end. The i-vector dimension is further reduced
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to 200 by LDA instead of 150 as in the cepstral i-vector sys-

tem.

3.3. MLLR system

For each speech segment, a total of 16 affine 39x40 MLLR

transformation matrices are estimated to adapt the Gaussian

means of HMM based LVCSR system to the speaker in the

segment; eight transforms were estimated relative for each of

the male and female recognition models, independent of the

speaker’s true gender. More details on the speech recogni-

tion system used can be found in [12]. The resulting vector

is of dimension 24,960, and probabilistic principal compo-

nent analysis (PPCA), trained on the same data as used in the

i-vector extractor training of the cepstral i-vector system, is

used to reduce the feature dimension to 800. The i-vector di-

mension is also reduced to 150 by LDA here.

4. NOISE-ROBUST SYSTEM

A straightforward approach to achieving noise robustness in

our systems would be to add noisy data in all stages of the sys-

tem: UBM, i-vector extractor, and LDA/PLDA. UBM and i-

vector extractor training are computationally expensive stages

taking lots of memory and CPU resources. On the other hand,

LDA/PLDA training is very fast by comparison. Initial at-

tempts at adding noisy data to UBM and i-vector training

have shown very small gains. Hence, in this work, we only

add noisy training data into the LDA/PLDA stage. Note that,

as explained in the previous section, the noisy data added in

training is not affected by the same noises as the test data.

Furthermore, the data added to train LDA/PLDA includes all

three SNR levels. We do not create SNR-specific models.

5. EXPERIMENTS

We evaluated systems trained on clean data under noisy con-

ditions using the corpus described above. Furthermore, we

show how the use of noisy data in training the speaker ver-

ification system can mitigate the effect of additive noise in

the utterances. Performance is reported using equal error rate

(EER) and decision cost function (DCF) as recently defined

by NIST for the core condition of 2010 SRE [15].

5.1. Cepstral system

Figure 1 shows the performance of the cepstral system under

different noise conditions, as well as the relative improvement

obtained from the addition of noisy data in PLDA training.

As expected, the system accuracy degrades as the SNR

decreases. Indeed, the EER degrades by about 13 times from

the clean-clean condition to the 8 dB-8 dB condition. The

improvement obtained from retraining PLDA with noisy data

is significant and increases as the SNR decreases. The same

Fig. 1. A cepstral-based speaker verification system evaluated

under different noise conditions. Figures (a) and (c) show the

EER and DCF of the baseline system on different noise con-

ditions. The x-axis corresponds to the SNR level in one of the

sessions involved in the trials, while the color of the curve cor-

responds to the SNR level of the other session. Each marker

then corresponds to the results on one of the sets in the noisy

corpus. Figures (b) and (d) show the relative improvement

when adding the noisy training data into the PLDA model rel-

ative to using only clean data (baseline system). The dashed

line represents the performance in the all vs. all case

effect is observed on mismatched SNR sets. This is evidence

that, in our systems, it is not essential to have a match between

the SNR of the training data and that of enrollment and test

data. This fact greatly simplifies the design of the system

since a single LDA/PLDA model can be used for any SNR

level in the data.

5.2. MLLR system

Figure 2 shows the performance of the MLLR system under

different noise conditions and the relative improvement ob-

tained from the addition of noisy data in PLDA training.

Similar conclusions as for the cepstral system described

above can be drawn for the MLLR system: adding noisy data

in PLDA improves the system’s robustness under noise. How-

ever, there is a slight degradation of EER on the clean data set

when using the noisy version of PLDA. Note also that, in this

case, the degradation from the clean matched condition to the

8 dB matched condition is around 7 times, much less than that

for the cepstral system.

5.3. Prosodic system

Figure 3 shows the performance of the prosodic system under

different noise conditions and the relative improvement ob-

tained from the addition of noisy data in PLDA training. The

DCF metric is not shown here since it is always close to 1 for

this system and no conclusions can be drawn from it.
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Fig. 2. An MLLR-based speaker verification system evalu-

ated under different noise conditions. See caption of Figure 1

for an explanation of the format of the figures.

Fig. 3. A prosody-based speaker verification system evalu-

ated under different noise conditions. See caption of Figure 1

for an explanation of the format of the figures.

In this case, the degradation from the clean matched con-

dition to the 8 dB matched condition on the baseline approach

is around four times, a much smaller degradation than for the

other two systems. Similar conclusions can be drawn for the

prosodic features as for the other feature sets described above

with respect to the gains obtained from adding noisy data for

PLDA training. However, in this case there is no performance

degradation in the clean condition when the noisy training

data is added into the PLDA training.

6. CONCLUSIONS

We show results on a newly designed noisy corpus for speaker

recognition where real recordings of babble noise were added

to original NIST SRE clean speech data. This corpus was de-

signed so that the tools and data used for its creation are freely

available, ensuring that the presented results can be replicated

by other groups.

We show results for three different sets of features mod-

eled using a state-of-the-art i-vector framework followed by

PLDA modeling. The EER on the noisier sets of the corpus

shows a range of degradations from 4 to 13 times with respect

to the EER observed on the clean set. The level of degradation

depends on the feature set, with higher-level features showing

smaller degradations.

Finally, we show that adding nonmatched noisy data of

several SNR levels to the PLDA training data gives improve-

ments as large as 40% on noisy conditions with different SNR

levels, with larger gains for noisier sets. These improve-

ments are consistent across all feature sets tested. This obser-

vation supports the conclusion that current session variabil-

ity compensation techniques can effectively deal with addi-

tive noise, and that a fairly noise-robust speaker verification

system can be designed using state-of-the-art technologies as

long as proper training data is available.

A natural next step for this work includes a combination

of the presented systems. Initial results in this direction in-

dicate that additional robustness to noise can be achieved by

combination. These results will most likely be the topic of

a follow-up paper. Another direction we plan to pursue is

adding other kinds of real noises (apart from babble) to the

noisy corpus, including, for example, traffic or office noises.

Other robustness techniques are currently being explored, in-

cluding class-dependent mean normalization of i-vectors.
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