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ABSTRACT

Motivated by the application of speaker recognition in forensic area,
this paper presents a study on noise robustness of several automatic
speaker recognition system approaches, ranging from simple dot-
scoring and a standard i-vector system with cosine distance scoring
to a state-of-the-art i-vector Probabilistic Linear Discriminant Anal-
ysis (PLDA) system. Using the recent NIST 2010 Speaker Recogni-
tion Evaluation (SRE) data, the systems are analyzed in added noise
conditions with a range of signal to noise ratios. Various experiments
were conducted to study the influence of the noise on the speech ac-
tivity detection and Wiener filtering in the front-end of the system.

Index Terms— speaker recognition, i-vector, PLDA, noise con-
ditions, forensics

1. INTRODUCTION

Traditionally, automatic speaker recognition systems are developed
and tested in a clean speech environment. However, in many applica-
tions of speaker recognition, the speech samples provided to the sys-
tem may suffer from some background noise. In noisy conditions,
the performance of speaker recognition system is expected to drop,
especially in a low signal-to-noise ratio (SNR) situation [1, 2, 3].

In the last decade, some research has studied the behaviour of
speaker recognition systems in noisy speech conditions [1], and a
number of techniques has been proposed make speaker recognition
systems more noise-robust [2, 3, 4]. However, to the best of our
knowledge, there has been no research reported yet on the noise-
robustness of the modern i-vector speaker recognition approach that
has recently become mainstream in this field. Encouraged by many
reports on good performance offered by the i-vector system in clean
speech conditions, we are interested to see how the i-vector system
behaves when the SNR ratio becomes less favorable.

As a continuation of previous work on the system evaluation in
short duration conditions [5], and motivated by the application of au-
tomatic speaker recognition to forensics, this paper presents a study
on i-vector based speaker recognition systems in noisy speech con-
ditions. In forensic cases, a speaker recognition system can be uti-
lized for preparing legal evidence to the court by processing a speech
sample recorded from the crime scene (speech trace) and comparing
this to speech material from the suspect. In a specific forensic case
scenario, the speech trace can be corrupted by noise or other var-
ious forms of deterioration to the signal. Often, an incriminating
recording is made using a telephone in a car (engine, wheel rolling
and wind noise) or in a café or public place (voice babble and mu-
sic background noise). The effect of environmental noise on the
recording is at least twofold. On one hand, the noise is added to
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the speech signal at the transducer, leading to a lower SNR at the
receiver’s end. Additionally, this may reduce the coding efficiency
in case a speech compression system is used, e.g., with GSM calls,
which may lead to non-linear distortions in the speech signal. On
the other hand, the Lombard reflex in human speakers will cause
the speaker to change the vocal effort, in an unconscious effort to
increase the SNR at the receiver’s end (thus counteracting the first
mentioned effect) but simultaneously changing their voice’s spectral
characteristics. An attempt to study the latter effect has been car-
ried out in one of the NIST SRE-2010 evaluation conditions where
the vocal effort of speaker’s was manipulated without inducing ad-
ditional noise in the recording [6]. In this study we concentrate on
the effect of the lowering of the SNR through added noise, ignoring
the effects of the Lombard reflex at this point.

Using the most recent NIST Speaker Recognition Evaluation
data (SRE 2010) [6], a set of experiments was carried out in order
to study the behavior of several state-of-the-art speaker recognition
systems in noisy speech conditions. Perhaps one of the most under-
valued components of any speaker recognition system is the Speech
Activity Detection (SAD) algorithm. This process acts at the very
front-end of the processing chain, and is likely to be influenced by
added noise. In a first experiment we therefore look at the influ-
ence of noise on a full speaker recognition system compared to one
where the SAD component is given an “oracle” clean speech version
of the signal. In a second experiment we compare three different
systems with different forms of channel compensation and speaker
modeling: a simple dot-scoring system with channel compensation,
a standard i-vector system using LDA followed by WCCN and co-
sine distance scoring, and finally a state-of-the-art PLDA i-vector
system. In a third experiment we study whether our systems fa-
vor “matched” noise conditions for the training and test segment,
or whether they perform better if any of the two segments contains
clean speech. In a final experiment, we investigate whether a Wiener
filter at the front-end can alleviate some of the drop in performance
due to added noise.

The paper is structured as follows. Section 2 details the baseline
speaker recognition systems presented in this paper. Section 3 de-
fines databases used for our experiments, and how our noisy speech
database was generated. The experiment results and analysis are
given in Section 4.

2. BASELINE SPEAKER RECOGNITION SYSTEMS

2.1. Feature extraction and UBM training
All systems use the same feature extraction stage. We extract 20
MFCCs (including C0) using a 20 ms analysis window with 10 ms
overlap. Augmented with delta and double-delta coefficients, we
form 60 dimension features. A two-Gaussian energy-based SAD al-
gorithm (see Section 2.2) discards the silence frames, and then each
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feature dimension is feature-warped [7] using a 5-second analysis
window. Gender-conditioned, 2048-component UBMs were trained
using telephony speech from Switchboard II: Phase 3, Switchboard
Cellular (1&2), Fisher English and NIST SRE 2004–2006 corpora.

2.2. Speech Activity Detection (SAD)
An energy-based SAD algorithm [8, 9] was used to determine the
speech frames in an audio signal. This process involved training
a two-component Gaussian Mixture Model (GMM) from the log-
energy of the audio signal. Samples below the mean of the non-
speech Gaussian were iteratively removed and the GMM retrained
until the variance of the speech Gaussian was less than fives times
that of the non-speech Gaussian. Speech frames were found by ap-
plying a threshold of 1.3 standard deviations below the speech Gaus-
sian mean to the log-energy signal. The audio was considered to
contain no speech if no samples remained or the difference between
Gaussian means was less than 4.

2.3. Dot-scoring system
The first reference system was based on a fast, linear scorer to ap-
proximate GMM likelihoods using a simple inner product of a model
and a test vector in a similar manner to SDV’s NIST SRE-2008 sub-
mission [10]. This system reflects the behavior of the more tradi-
tional GMM-UBM approach. Techniques that were incorporated to
improve robustness of the dot-scoring system included ZT-score nor-
malisation and channel compensation using 50 dimensions estimated
from the NIST SRE 2004 and Switchboard data sets.

2.4. I-vector extraction and LDA system
The i-vector speaker recognition system follows the framework pro-
posed in [11]. An i-vector is a representation of speech utterance
in a low dimensional Total Variability (TV) subspace in which both
speaker and channel variation reside. I-vectors were extracted from
a 400-dimensional TV space that was trained using the same col-
lection of speech databases as used in UBM training. Our second
reference system was used in previous work [5], and consists of a
traditional i-vector approach, using 200-dimensional LDA for sepa-
rating speakers followed by Within-Class Covariance Normalization
(WCCN) [12] and utilizing normalized cosine distance scoring [13].

2.5. Probabilistic Linear Discriminant Analysis (PLDA)
The third and most state-of-the-art system is based on Probabilistic
Linear Discriminant Analysis (PLDA) modelling, following a sim-
ilar approach to [14]. PLDA is a probabilistic approach that mod-
els the distribution of i-vectors as a multivariate Gaussian. Thus,
the model can be used to directly compute the likelihood ratio of
two i-vectors originating from the same speaker versus originat-
ing from different speakers. Our system incorporates WCCN and
i-vector length normalisation [15] prior to PLDA which has been
shown to dramatically improve recognition performance. This sys-
tem framework is capable of obtaining the best performance in the
NIST 2010 SRE conditions involving telephone, interview and mi-
crophone speech.

2.6. Wiener filter
We investigate the use of Wiener filtering to help reduce noise in
the audio signal. Wiener filtering has been shown to be beneficial
to the performance in NIST conditions involving ‘microphone’ and
‘interview’ speech while not harming performance when applied to
telephone speech [9]. The filter relies on SAD in order to obtain
an estimate of the stationary noise spectrum. We use the same SAD
algorithm as detailed in Section 2.2, however, a non-iterative process
is used and the criteria to determine a silent audio segment were not

applied to ensure that part of the signal was defined as noise. Further,
the mean of the speech Gaussian was set as the noise threshold. The
noise spectrum for Wiener filtering was estimated from frames with
log-energy below this threshold.

3. DATABASES

3.1. Evaluation data

As evaluation data, we use NIST SRE-2010 with extended core tri-
als as detailed in the evaluation protocol [6] to characterize the noise
robustness of our speaker recognition systems. The experiments fo-
cus on the condition 5 which involves 416119 trials using telephony
speech, as this condition is most suitable to simulate forensic cases
for speaker recognition. In this paper, the system discrimination per-
formance is reported in the terms of equal error rate (EER) and Cmin

det ,
with Cmiss = 10, CFA = 1 and Ptar = 0.01.

3.2. Noise data

The NIST evaluation data is typically recorded in clean conditions.
We therefore obtain our noisy speech segments by adding noise from
a noise database, NOISEX [16], a commonly used noise database in
speech technology. Since we are motivated by the type of speech
encountered in forensic application, we use ‘babble’ and ‘interior car
noise’. These noise types are considered to be the among the most
commonly encountered in the speech recording from forensic speech
trace. In particular, babble noise is perhaps the hardest type noise to
deal with in speaker recognition and other speech technology fields
in general, because it has a very similar spectral characteristics as
the speech from the target speaker. The babble noise in NOISEX
was recorded in a canteen room with average sound level of 88 dBA.
The interior car noise ‘volvo’ was recorded inside a car driving at a
speed of 120 km/h on the asphalt road in rainy conditions.

3.3. Adding noise to audio signals

The noisy utterances used in this paper are made by adding a noise
signal from NOISEX database into the utterance trials in the NIST
SRE-2010 database for signal-to-noise ratios (SNR) 0, 5, 10, 15 and
20 dBA. Because the noise can be spectrally shaped quite differ-
ently from the signal it is masking, it does not suffice to simply use
the linear level of the signal and noise. Rather, we need to spec-
trally weight the noise spectrum according to the signal it is mask-
ing in order to compute the level of the noise. To this end, we use
the standard A-weighting of sound level, which is a filter based on
the characteristics of the human ear and includes the spectral region
where the majority of speech energy is observed. The dBA level of a
speech utterance was computed only from active speech frames after
having applied SAD. The noise files from NOISEX were truncated
to the same length as the target speech utterance and a starting point
defined based on the utterance name to induce randomness (thus pre-
venting any potential algorithm development depending on the exact
shape of the noise). The noise signal was then scaled to reach the
desired SNR before it was added to the speech signal.

4. RESULTS

The following experiments aims to characterize the noise-robustness
of modern speaker recognition systems. Firstly, the effect of noise
of automatic SAD is analysed after which we compare the general
system performance of our current PLDA i-vector system to the al-
ternate classifiers. Experiments then analyze the use of both clean
and noisy speech in trials to determine the effect of mismatch. Fi-
nally, Wiener filtering is employed in an attempt to improve system
performance in the context of noisy speech.
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SNR SAD Babble Car
(dBA) Speech Cmin

det EER(%) Cmin
det EER(%)

0 Noisy .0960 30.37 .0670 15.18

Clean .0991 31.54 .0266 5.20

10 Noisy .0946 26.26 .0498 10.39

Clean .0602 13.92 .0187 3.60

20 Noisy .0371 7.23 .0440 7.64

Clean .0276 5.30 .0164 3.14

Table 1. PLDA i-vector results comparing the effect of Noisy or

Clean speech on speech activity detection for a range of SNRs.

4.1. Speech activity detection algorithm evaluation
In the first experiment, we analyze the noise-robustness of our SAD
algorithm. To this end, we extracted features from a noisy speech
sample (see Section 3.3) and then used the clean or the same noisy
speech sample for the purpose of SAD. Table 1 presents the recog-
nition results from the PLDA i-vector system comparing Clean and
Noisy SAD options in babble and car noise conditions. It should
be noted that in the presence of severe babble noise, our SAD algo-
rithm failed to detect speech in a considerable number of utterances,
namely due to the criteria enforced in Section 2.2. Scores from trials
involving these utterances were excluded from the results reported
in Table 1.

Comparing the two SAD options in Table 1 it can be observed
that the Cmin

det and EER when using SAD based on noisy speech was
considerably higher than SAD based on clean speech. In the 0 dBA
babble noise condition, however, similar performance was obtained
between the two SAD conditions. It is expected that this occurred
due to the exclusion of a number of trials for which features were
not extracted leaving only features in which speech was more readily
detectable due to a higher dynamic range in speech relative to the
babble noise. These findings indicate that our SAD algorithm is not
robust against noise, with result that it gives a large contribution to
worsen the system performance in the noisy speech condition.

Based on the above analysis of our SAD algorithm, the experi-
ments in Section 4.2 and Section 4.3 are presented for the SAD based
on clean speech signal. This decision is motivated by a forensic sce-
nario in which the manual segmentation or speech labeling may be
performed when encountering noisy speech.

4.2. The effect of noise on modern recognizers
In this section we compare the behavior of three modern speaker
recognition systems on various noisy speech conditions. Figure 1
depicts the EER performance metric of the state-of the art PLDA and
LDA i-vector systems and the traditional dot-scoring system across
a range of signal-to-noise ratios. All experiments were carried out
using SAD based on clean speech during feature extraction.

In Figure 1, the solid lines correspond to the babble noise condi-
tions, while the dashed lines correspond to the car noise conditions.
It is clear from Figure 1 that all systems performed better in the pres-
ence of car noise as opposed to the more challenging babble noise.
This can be explained in consequence of the fact that babble noise
has same spectral shape as speech signal, which made this type of
noise harder to deal with.

Focusing on the babble noise condition, the performance of the
dot-scoring system dropped severely from the reference point even
at a relatively high SNR of 20 dBA. In contrast, the i-vector sys-
tems offered a more gradual degradation in performance at the high
SNRs. In the babble noise condition, both i-vector systems with
PLDA and LDA classifiers were found to have same performance
trends across all SNR levels, with the PLDA classifier consistently

Fig. 1. System performance in terms of EER for dot-scoring, PLDA

and LDA i-vector systems in Babble and Car noise conditions.

offering superior performance. The effect of car noise across all
three systems was found to offer similar performance trends to those
observed with babble noise, albeit to a lesser degree. In the presence
of car noise, the relative EER drop of i-vector systems was approx-
imately 10–20 % for every −5 dB step, compared to 40–60 % in the
babble noise condition. It can observed from the plot that i-vector
based speaker recognition systems are relatively robust to car noise
while babble noise present a considerable problem to the system.
This was not the case, however, for the dot-scoring system where it
can be observed that the EER for both i-vector systems in the noisiest
condition (0 dBA) was lower than the Dot-scorer with a SNR of 20
dBA. This analysis indicates that the noise robustness of automatic
speaker recognition technology progresses along with improved al-
gorithms and computational efficiency.

4.3. Mismatch noise conditions

In the previous section we presented results when both sides of a trial
were degraded by noise. For clarity, we refer to this as a ‘matched’
noise condition. In this section, we present results on ‘mismatched’
noise conditions in which a clean speech signal was used for the
train side and noisy speech for the test side. Motivation for mis-
matched evaluation comes from the forensic scenario in which a sus-
pect interview can be recorded in a controlled environment while the
conditions of the speech trace recording are typically uncontrolled.
The EER from PLDA i-vector and the dot-scoring systems under
matched and mismatched noise conditions are presented in Table 2.

Table 2 shows that the EER from the PLDA system for mis-
matched trials was consistently and considerably lower than for
matched trials in both noise conditions. Similar trends were ob-
served in the dot-scoring results despite the presumption that speaker
recognition systems tend to perform worse in mismatch noise con-
dition trials [3]. In fact, the relative performance improvement from
mismatched conditions over matched conditions in the Dot-scorer
was greater than that observed in the PLDA system. However,
the PLDA system maintained a considerable improvement over dot-
scoring performance. These results indicate that mismatched noise
conditions do not adversely affect recognition performance. Rather,
the presence of clean speech in one of the trial sides can significantly
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SNR Babble Car
(dBA) Match Mismatch Match Mismatch

PLDA

0 31.54 26.48 5.20 3.26

10 13.92 9.29 3.60 2.59

20 5.30 3.42 3.14 2.60

Dot

0 41.16 28.97 14.98 5.38

10 25.65 12.39 10.24 4.30

20 13.48 5.80 7.53 4.21

Table 2. EER (%) for matched and mismatched noise condition in

trial sides for PLDA and dot-scoring (Dot) systems.

Wiener Feature Babble Car
SAD SAD Cmin

det EER(%) Cmin
det EER(%)

N/A

Clean

.0602 13.92 .0187 3.60

Noisy .0550 12.11 .0181 3.42

Clean .0553 12.22 .0187 3.54

N/A Noisy .0946 26.26 .0498 10.39

Noisy Filtered .0994 23.28 .0180 3.59

Table 3. Results when using Clean and Noisy speech to obtain

speech frames for Wiener filtering and feature selection at a SNR

of 10 dBA for the PLDA i-vector system.

improve system performance.

4.4. Noise reduction through Wiener filtering

Results in previous sections illustrated the performance deterioration
of the PLDA i-vector speaker recognition system in noisy speech
conditions. In this section we investigate whether the straightfor-
ward approach of Wiener filtering can help reduce this deteriora-
tion. Given an estimation of noise component of an audio signal,
Wiener filtering has the ability to reduce the perceived noise in a
signal by removing the spectral average of the noise. As detailed in
Section 2.6, we employ our SAD algorithm to obtain this noise esti-
mation. Consequently, two independent SAD processes are involved
in the front-end feature extraction process: Wiener filtering SAD and
Feature SAD to select features corresponding to speech frames. We
investigate the effect of noise on both of these SAD processes.

Table 3 details results from the PLDA i-vector system when
evaluating noisy (SNR of 10 dBA) and subsequently Wiener-filtered
speech. Note that ‘N/A’ indicates that Wiener filtering was not ap-
plied. In the case of Feature SAD using clean speech, it was ob-
served that Wiener filtering offered a marginal improvement over
un-filtered noisy speech in the babble noise scenario, irrespective of
the speech used for Wiener SAD. In the case of car noise, however,
the effect of Wiener filtering was negligible. Results using Feature
SAD based on noisy or filtered speech are indicative of an automatic
speaker recognition system in which speech labels nor clean speech
are provided. In this scenario, the babble noise results were only
marginally improved through the application of Wiener filtering. It
is expected that the effect of Wiener filtering is limited in this case
due to the perceived noise spectrum being closely representative of
the speech spectrum. In the case of car noise, however, Wiener filter-
ing provided a significant improvement. In fact, using noisy speech
for Wiener SAD provided comparable results to those obtained used
Feature SAD based on clean speech. These results indicate that
Wiener filtering improves the robustness of our energy-based SAD
algorithm in the presence of car noise. However, Wiener filtering
is not sufficient to reduce the effects of noise in the PLDA i-vector
based system motivating further research into more advanced noise
reduction techniques to address the detrimental effects of noise.

5. CONCLUSIONS

This paper evaluated the recent i-vector framework for speaker
recognition based on PLDA in various noise conditions in compari-
son to other previous systems. Results indicate that the state-of-the-
art i-vector framework is more noise robust than traditional GMM-
UBM (i.e., dot scoring) methods. The i-vector framework was found
to offer some robustness to added car noise, in which the EER dou-
bled under very noisy 0 dBA SNR condition. Babble noise, how-
ever, posed a more significant problem. The application of Wiener
filtering provided little benefit, thus motivating further research into
noise-robust modelling techniques for speaker recognition.
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