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ABSTRACT

Speaker recognition by machines can be quite good for large 
groups as seen in NIST speaker recognition evaluations.  However, 
speaker recognition by machine can be fragile for changing 
environments.  This research examines how robust humans are for 
recognizing familiar speakers in changing environments.  
Additionally, bandlimited noise was used to try to learn what 
frequency regions are important for human listeners to recognize 
familiar speakers.

Index Terms— Speaker Familiarity, Voice Recognitions by 
Humans

1. INTRODUCTION

While speaker recognition by machines can be quite good for large 
groups, cross-conditions between the training and testing data can 
still cause a drop in recognition performance.  Additionally, every 
speaker model is built the same way with the same features and 
same steps being used to train every speaker model.  This research 
takes a cursory look at how robust humans are at identifying 
familiar speakers in changing environments.

For speaker identification, there may be many clues that 
convey the speaker’s identity.  Figure 1 shows a possible approach 
that humans may use for speaker identification.  It was derived by 
analyzing potential linguistic and non-linguistic cues.  It is not 
expected that all the information is needed or used by humans, but 
instead, a systematic approach is used.  If the person is very 
familiar to the listener, then the word choice or non-linguistic 
information (such as a laughter or stutter) may allow the listener to 
quickly identify the speaker.  For speakers that are less familiar to 
the listener, then a multi-step process may be needed such as 
narrowing the possible choices by the gender, age, accent, etc., 
until enough information is gathered to make a successful 
identification.  

In [1], the research showed that female speakers were 
recognized better by both male and females listeners. Thus, the 
cues needed for female recognition may be different than those 
needed for male identification.  Or, the cues for males may be less 
distinct.  For homogenous groups, it is expected that more cues 
would be required to make an identification.  For machine 
algorithms, it's hard to correlate which cues may be captured by the 
cepstral feature.

Part of the motivation for this work began by looking at 
speech from a psychoacoustic perspective, that is, what 
information affects the recognition of familiar speakers.  In [2], 
speech stimuli (sentences) were filtered into five adjacent bands of 
equal intelligibility where each band provided equal contribution 
for the overall intelligibility of the stimuli in a quiet environment.  
The low band of 111-561 Hz is only 596 Hz wide while the high 
band of 2807-11000 Hz is 7439 Hz wide; yet their overall 
contribution to intelligibility is equal.  The additive noise was 
matched to the long-term average speech spectrum (LTASS) [3] of 
the stimuli.  This is an important step to ensure that the additive 
noise for each band has the same signal-to-noise ratio (SNR).  The 
research found that listeners placed greater importance on the 
second and fifth band region in degraded noise environments for 
sentences. If different region carry different information and 
importance for speech intelligibility, then, likewise one might
expect different regions to carry different information and 
importance for speaker recognition.

Speech can be modeled as a source-filter type problem and 
both the source and filter can provide cues for speaker recognition.  
In [4], the author eliminated the inter-speaker variability of the 
source by using an electro-larynx.  There were 10 male speakers 
and 10 female speakers.  The speakers were instructed how to 
produce non-phonated speech using an electro-larynx.  For both 
male and female speakers, the fundamental frequency of the 
electro-larynx was 85 Hz with a jitter of ±3Hz.  The experimental 
task was to listen to two voices and decide if the voices were the 
same or not.  Results for over 1100 speaker comparisons yielded a 
success rate of greater than 90%.  Thus, there are still sufficient 
cues, aside from the glottal excitation, to allow for speaker 
discrimination.  Interesting, there were significantly less errors for 
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Figure 1: Potential Cues for Speaker Recognition by 
Humans.
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male-male pairs compared to female-female pairs.  Once again, it 
seems that different speakers or different groups of speakers have 
different cues towards their identity.

Speaker recognition by listeners has been studied for a while
[5], [6].  However, the challenge with speaker recognition 
experiments is that it is difficult to get a large group of people who 
are familiar with each other.  Thus, experiments tend to stay at 
about 10-15 speakers and similarly for the number of listeners. 

The article [7] showed that the discrimination of unfamiliar 
speakers (speaker verification) compared to the recognition of 
familiar speakers (speaker identification) were distinct processes 
that occurred in different parts of the brain.  This research is 
focused on the familiar speaker identification task by human 
listeners.  Section 2 describes the audio data that is used for the 
listening experiments, Section 3 describes the experiments, and 
Section 4 examines the results along with some statistical analysis.

2. AUDIO DATA

The short-term goal of this research was to learn what frequency 
information is important for recognition of familiar speakers by 
masking out certain frequency information.  The long-term goal is 
to use this information to develop more robust speaker recognition 
features.  This paper used additive speech-shaped noise (LTASS) 
to degrade particular frequency regions of the speech signal [2], 
[3].  This way, the signal will still sound natural and the 
performance of listeners can be tied to the degradation of particular 
frequencies.  If the performance decreases when a set of 
frequencies are masked by an interfering signal, it would indicate 
that frequency range was important. Other techniques for masking 
or bandlimiting certain frequencies are viable, but may change the 
naturalness of the audio and can alter the inherent periodicity in 
speech.

The audio data for playback was from a previous data 
collection, called MARP (Multi-session Audio Research Project), 
which ran from May 2005 until March 2008 (USAF IRB, Protocol 
F-WR-2003-0032-H) and has been valuable for research in speech 
processing.  See [8] for a more detailed description of the MARP 
corpus.  Part of the MARP corpus was short, spontaneous 
sentences.  The recording sessions were designed to provide 
realistic recordings of short sentences (about 1-2 seconds in 
duration) that were elicited in a casual, informal style.  Read 
speech tends to have different speaking rates, inflections, and 
emotions compared to audio that is spoken more naturally (i.e.,
conversational speech).

Table 1: Stimuli used for Listening Experiments.
Sentence Sentence
1 Let’s go skiing today.
2 We’ll be leaving early tonight.
3 You’re going to go with them.
4 It’s time to go now.
5 We could get a drink.
6 I need some coffee now.
7 She was home too late.
8 He broke his lower leg.
9 We need to be careful.
10 He heard the movie was great.

From the MARP corpus, there were 25 voices (20 males and 5 
females) that were familiar to the listeners of the experiments in 

this research. The sentences used for playback were short.  The 
goal was to make the listening experiments challenging so that 
additional noise would cause degradations.  Table 1 lists the short 
sentences that were used.  The sentences were downsampled to 
8000 Hz.  This limits the frequency content of the audio data to 
4000 Hz.  While there is information past 4000 Hz for audio data, 
an 8000 Hz sampling rate mimics a lot of communication devices 
such as telephones.

3. EXPERIMENTAL SETUP

There were 17 listeners in this study which included 3 females and 
14 males (USAF IRB, Protocol F-WR-2010-0028-H).  The 
listening experiments consisted of several phases. It started with a 
pure tone listening test.  The pure tone listening test is used to 
verify if the speakers have normal hearing or not.  The frequencies 
tested were 125, 250, 500, 1000, 2000, 4000, and 8000 Hz.  Then, 
a training phase was administered to allow the listeners to become 
familiar with the experimental setup and tasks.  Next, there was a 
baseline experiment with clean stimuli (no additive noise).  This 
was followed by several experiments with various types of noise 
degradation.

For this research, normal hearing was defined as 25 dB above 
the ANSI hearing threshold.  Of the 17 participants, 11 participants 
had normal hearing. The other 6 participants failed at least one 
frequency.  For the pure tone test, both the left and right ear was 
tested separately.  However, only the right ear was used for 
subsequent experiments.  The results are reported in two groups: 
those with Normal Hearing (NH) and those with a Hearing Deficit 
(HD).  For the training phase, additional data other than the 
sentences listed in Table 1 were used.  For this session, the 
listeners had the option to repeat the audio and received feedback 
about whether they chose the correct speaker or not.  As stated 
before, there were 25 voices for playback.  When the listener 
would hear a voice, they would be required to choose from a drop-
down list of all 25 voices.

Sessions 1-6 were a series of experiments that started with a 
clean (no noise) stimuli (Session 1), and then corrupted the stimuli 
with speech-shaped, additive noise [3] at various frequency bands.  
The goal is to discover which frequency bands are most important 
for the familiar speaker recognition task.  Table 1 lists the session 
number, the noise location, and the noise level.  By using speech-
shaped noise, the roll-off of the additive noise closely matches the 
roll-off of speech.  The -20 dB noise level was used to mask a 
frequency region by having the noise level be greater than the 
speech level.  It was also designed to degrade the performance of 
speaker recognition.  As seen in Table 1, for Sessions 1-5, new 
sentences are being used. This is to prevent a learning curve from 
hearing the same stimuli over and over.  Session 6 (no noise) is 
identical to Session 1 to see if there is a learning curve.

Table 2: Session Number and Corresponding Stimuli with 
Noise Location and Level.

Session Sentence # Noise Location SNR Level
1 1, 2 Clean-1 N/A
2 3, 4 0-1000 Hz -20 dB
3 5, 6 1000-2000 Hz -20 dB
4 7, 8 2000-3000 Hz -20 dB
5 9, 10 3000-4000 Hz -20 dB
6 1, 2 Clean-2 N/A
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4. EXPERIMENTAL RESULTS

Figure 2 shows the results for Sessions 1-6.  Remember that there 
are 25 voices and for every session, each voice is presented twice.  
Thus, a 90% correct means that out of 50 voice presentations, the 
listener identified the correct speaker 45 times.  It was always a 
forced choice decision.  Note that in Figure 2 the two lines follow 
the same general trend except the hearing deficit group seemed to 
have a larger, broader dip.  Not surprising, all speakers do the best 
with no additive noise.  Any additive noise causes a drop in 
performance for both groups. For the NH Group, the 2000-3000 
Hz LTASS noise resulted in the lowest recognition scores.  While 
it is tempting to say this results shows that important speaker 
information is in the frequency range, it is critical to complete 
statistical analysis both between the groups and within each group.

Figure 2: Correct Speaker Recognition for Sessions 1-6
with 1 Standard Deviation.

As stated before, the goal in using different sentences for each 
listening session was to prevent a learning curve.  In hindsight, 
using different sentences with different noises make it difficult to 
compare between sessions since there is different phonetic 
information.  However, a multi-step approach can be used to test 
for significant differences between the two groups and between 
sessions within a group.

4.1. Statistical Difference Between the NH and HD Groups

A Jarque-Bera test was used to test if each distribution is a normal 
distribution or not with a significance of 0.05.  The null hypothesis 
of the Jarque-Bera test is that the distribution is a normal 
distribution with unknown mean and variance.

For the first results in Figure 2 (Session 1, NH = 90.0%, HD = 
73.3%), the Jarque-Bera test for the NH distribution is H0 = 1, 
which means it can be rejected at the 5% significance level.  In 
other words, the chances of this distribution being a normal 
distribution is less than 5%.  For the HD distribution, the Jarque-
Bera test yields H0 = 0 which means it cannot be rejected at the 5% 
significance level.

Although the Jarque-Bera test indicated that one distribution 
can be rejected as being normal and the other cannot, the rank sum 
test can be used to further validate that these distributions are 
statistically different.  The null hypothesis of the rank sum test is 

that the two distributions are from identical continuous 
distributions with equal medians.  Using the rank sum test for these 
two distributions with a significance of 0.05, the alternative 
hypothesis H1 held true.  Using the results of the Jarque-Bera test 
and the rank sum test, the conclusion is that the two distributions of 
the NH and HD for the Session 1 condition are statistically 
different.

For Sessions 2, 3, 4, and 6, the statistical tests yield the same 
results as Session 1.  That is the distribution of the NH is 
statistically different than the HD because the two distributions fail 
both the Jarque-Bera test and the rank sum test.  For Sessions 5 (3-
4k Hz LTASS noise), both distributions passed the Jarque-Bera 
test and the F-Test, but then failed the T-Test (i.e., reject the null 
hypothesis of equal means at the 5% significance level).  To 
summarize, the distribution of the NH and HD are statistically 
different for each listening condition.

The ages of NH listeners ranged from 22-49 with an average 
age of 34.  The ages of HD listeners ranged from 49-72 with an 
average age of 60.  For the HD, it was noted that they had failed at 
least one frequency presumably due to sensorineural hearing loss.  
In [7], the authors look at duration discrimination between young 
listeners and elderly listeners (both with normal hearing and 
hearing impairment) and concluded that age played a major role 
(and not hearing loss) in the diminished duration discrimination in 
the elderly.  For these experiments, it’s hard to say if age, hearing 
loss, or a combination of factors contributed to the lower scores in 
Figure 2 for the HD Group.

4.2. Statistical Difference within the NH and HD Group

The previous section examined the statistical significance between 
the two listening groups for each listening scenario.  This section 
examines the statistical significance between two listening 
scenario, but within the same listening group.  For example, is the 
distribution of the 0-1k Hz LTASS noise statistical different than 
the 1k-2k Hz LTASS noise for the NH Group?  Using the same 
statistical approach and the various listening permutations (i.e., 
clean compare to 0-1k Hz noise or, 2k-3k Hz noise compared to 
3k-4k Hz noise), the only distributions for the NH Group that are 
statistically different with a significance of 0.05 are those listed in 
Table 3.  This process is repeated for the HD Group and the results 
are also listed in Table 3. For the NH Group, all of the conditions 
that are statistically different involve one of the clean (no noise) 
conditions.  Likewise, for the HD Group, most of the conditions 
that were statistically different involved one the clean (no noise) 
conditions. Any pair of conditions that are not listed in Table 3
were not statistically different for either group.

Table 3: Within Group Conditions that are Statistically 
Different

CONDITION 1 CONDITION 2 NH HD
Clean-1 1k-2k Noise X X
Clean-1 2k-3k Noise X X
Clean-1 3k-4k Noise X
Clean-2 0-1k Noise X
Clean-2 1k-2k Noise X X
Clean-2 2k-3k Noise X X
Clean-2 3k-4k Noise X
0-1k Noise 2k-3k Noise X
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4.3. Elapsed Time

Another statistic to examine is the average time required to 
complete each session.  In Figure 3, the average session duration 
time (in seconds) is plotted versus the session type.  The average 
session duration is the time required to complete an entire listening 
session (50 forced choice decisions), but the duration time of the 
stimuli has been subtracted out. One thing to note is that for both 
listening groups, the average elapsed time always increased with 
additive noise.

Note that the two clean sessions were identical to see if there 
was a learning benefit.  For the HD Group, the performance of 
correctly identifying the voices essentially had not changed 
between the two clean sessions.  But, this graph shows that they 
completed the entire listening session about 73 seconds faster.  
Thus, they came to their conclusion much more quickly the second 
time for the clean session, but at a similar accuracy.  For the 
normal listeners, they too made their decisions faster (an average 
of 102 seconds faster) and their performance improved by 4.9%.  
This increase may be due to becoming more familiar with the task, 
more accustomed with the GUI, and more proficient at identifying 
the voices.

The average session duration between the NH and HD Groups
is statistically significant for each listening condition.  However, 
within the HD Group, there is not a statistical difference between 
any of the listening condition.  Within the NH Group, the clean-2
condition was statistically significant from the other five listening 
conditions.

Figure 3: Average Elapsed Time vs Session Type

5. SUMMARY

The main conclusion of this research to date is that, the distribution 
of the NH and HD are statistically different for each listening 
condition, both for the performance values in Figure 2 and the 
elapsed time of Figure 3.  Additional analysis is looking at various 
factors that may impact a listener’s ability to identify a person’s 
identity. Factors such as duration, amount of voiced speech, 
harmonic-noise-ratio, jitter, shimmer, formant locations, etc are 
currently being examined. Perhaps, discovering what makes a 
person’s voice unique would enable speaker specific features.

The original goal of this effort was to discover which 
frequency bands are most important for the familiar speaker 
recognition task.  As discussed in Section 5.2, all the bandlimited 
noise conditions resulted in lower performance compared to the 

clean (no noise) scenario.  Yet, there was not a statistical difference 
between any two bandlimited LTASS noise conditions (except the 
last row in Table 3 for the HD Group).

While there is some research in the literature that looked at 
how well listeners could identify familiar speakers, the authors did 
not find research that looked at what frequency information was 
important for speaker identification.  This research was a cursory 
look and requires more listening experiments with better 
randomization of stimuli and phonetic consideration.  

The pure tone test was designed only to classify listeners as 
having normal hearing or not.  It does not give insight into how 
good or how poor their hearing is.  A listening threshold test is 
planned to measure this information and to see if there is a 
correlation between the sensorineural hearing abilities and the 
ability to identify familiar speakers. Additionally, a pure tone test 
does not take into account the cognitive reasoning process which 
includes such things as memory, decision making, language 
understanding, etc.
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