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ABSTRACT
Reverberation poses detrimental effects on performance of auto-
matic speaker identification (SID) systems. This paper proposes
a blind spectral weighting technique for combating the late rever-
beration effect (aka overlap-masking effect) on SID systems. The
technique is blind in the sense that prior knowledge of neither the
anechoic signal nor the room impulse response is required. Per-
formance of the proposed technique is evaluated in terms of: 1)
accuracy obtained from closed-set SID experiments, using speech
material from the TIMIT corpus and four different measured room
impulse responses from Aachen impulse response (AIR) database,
and 2) equal-error rate (EER) obtained from experiments on a new
data corpus well suited for speaker verification experiments under
actual reverberant mismatched conditions, entitled MultiRoom8.
Results prove that incorporating the proposed blind technique into
the standard MFCC feature extraction framework yields significant
improvement in SID performance.

Index Terms— Blind dereverberation, mismatched condition,
overlap-masking effect, speaker identification, speaker verification

1. INTRODUCTION

In a reverberant enclosure, sound waves arrive at the receiver (e.g.,
ears or microphone) via a direct path, and via multiple paths and di-
rections after reflecting off walls and objects defining the acoustic
enclosure. The reflections arriving within 50-80 ms after the direct
sound are called early reflections, which tend to build up to a level
louder than the direct sound and cause an internal smearing effect
known as the “self-masking effect”. The echoes reaching the re-
ceiver after the early reflections are called late reflections, which tend
to smear the direct sound over time and mask succeeding sounds.
This phenomenon is commonly referred to as the “overlap-masking
effect”, and has been shown to be the primary cause of degraded
speech identification performance for both human and machine lis-
teners [1], [2]. The overlap-masking effect can also mask/obscure
the spectral details and acoustic cues essential for automatic speaker
identification (SID), resulting in a major drop in performance [3],
[4].

From a signal processing perspective, reverberation can be con-
sidered a convolutive/channel distortion, nevertheless, in the semi-
nal work of [2] it has been shown that the overlap-masking effect
can be modeled as an uncorrelated additive interference. Hence, it
can be compensated via spectral subtraction, given that an estimate
of the late reverberation spectral variance is available. This has in-
spired several single and multichannel approaches that have consid-
ered spectral subtraction for blind late reverberation suppression [5],
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[6]. Because a rough estimate of the reverberation time (aka T60) is
required to compute the late reverberation spectral variance, perfor-
mance of these approaches are highly dependent on the accuracy of
the T60 estimation.

In this paper, following the uncorrelated and additive assumption
for late reverberation, we propose a spectral weighting technique to
mitigate the reverberation overlap-masking effect on performance of
automatic SID systems. The weights are computed using a paramet-
ric gain function which is based on a priori signal-to-interference ra-
tio (SIR) estimate. A smoothed and shifted version of the reverberant
power spectrum is used as an approximation for the late reverbera-
tion spectral variance. The technique is entirely blind, meaning that
prior knowledge of neither the anechoic signal nor the room impulse
response (RIR) is required.

Performance of the proposed technique in mitigating the adverse
reverberation impact on SID is evaluated through closed-set SID and
speaker verification experiments. For the closed-set SID task, we
consider four different reverberant mismatched conditions simulated
using TIMIT speech data and measured RIRs, with T60 ranging from
0.11 s to 0.83 s, extracted from the Aachen impulse response (AIR)
database [7]. For the verification experiment, we consider 7 dis-
tinct reverberant mismatched scenarios from the MultiRoom8 corpus
made available by AFRL. We employ the proposed spectral weight-
ing solution as a pre-processing step in the standard MFCC feature
extraction framework, and evaluate its effectiveness in suppressing
the late reverberation effect on SID. For the sake of comparison, we
also perform the same experiments with two other blind reverber-
ation compensation strategies, namely long-term log-spectral sub-
traction (LTLSS) [8], and Gammatone subband based non-negative
matrix factorization (NMF) [9].

2. BLIND SPECTRAL WEIGHTING (BSW) ALGORITHM

2.1. Mathematical model of reverberation

In a reverberant environment, the speech signal received at the mi-
crophone is a delayed sum of a direct sound and its reflections from
walls and objects in the acoustic enclosure, and hence can be mod-
eled as the convolution of the RIR with the speech signal,

r(n) =

L−1∑
j=0

s(n− j)h(j) = s(n) ∗ h(n), (1)

where r(n) and s(n) are the reverberant and anechoic signals, re-
spectively, and h(n) is the RIR. The RIR h(n) can be partitioned
into two parts he(n) and hl(n) as,

h(n) =

⎧⎨
⎩

0, n < 0
he(n), 0 ≤ n <ne

h�(n), ne ≤ n <L
(2)

4225978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



STFT

delay (ρ) scaling & 
smoothing

PSD 
estimation

spectral
weighting

to feature
extraction

( )r n

late reverberation
power estimation

2ˆ| ( ) |k
eR m

( )kR m 2ˆ| ( ) |kR m

2ˆ| ( ) |k
lR m

Fig. 1. Block diagram of the proposed spectral weighting technique
for suppression of the late reverberation.

where L is the length of h(n), and ne is a time window thresh-
old chosen such that he(n) consists of the direct path signal and a
few early reflections, while h�(n) consists of all the late reflections.
The time threshold ne is commonly set to a value within 50-80 ms
range. Late reflections that smear the speech spectra and reduce sig-
nal quality, are characterized by T60. These have a long-term effect
on speech signals and therefore cannot be effectively compensated
for using conventional cepstral mean subtraction (CMS) within the
short-term speech analysis framework [10]. On the other hand, early
reflections that cause coloration distortion and increase the promi-
nence of low-frequency energy, are characterized by the direct-to-
reverberant ratio (DRR) which is dependent on the distance between
the sound source and microphone.

Taking (2) into account, (1) can be rewritten as,

r(n) =

ne−1∑
j=0

s(n− j)he(j)

︸ ︷︷ ︸
re(n)

+

L−1∑
j=ne

s(n− j)h�(j)

︸ ︷︷ ︸
r�(n)

, (3)

where re(n) and r�(n) are referred to as the early speech compo-
nent and late reverberant speech, respectively. Our objective is to
blindly suppress the late reverberant speech using spectral weight-
ing, hence mitigating the detrimental effects of reverberation on the
performance of automatic SID systems.

2.2. Parametric gain function

A block diagram illustrating the proposed spectral weighting tech-
nique for mitigating the reverberation overlap-masking effect on the
performance of automatic SID systems is depicted in Fig. 1. The late
reverberant speech is suppressed in the short-time Fourier transform
(STFT) domain by applying spectral weights as,

R̂k
e (m) = Gk(m) ·Rk(m), (4)

with m and k being the time frame and frequency-bin indices, re-
spectively. The spectral weights are computed using a parametric
gain function defined as,

Gk(m) =

(
ξk(m)

ξk(m) + α

)β

, (5)

where ξk(m) denotes the a priori SIR, and α and β are some con-
stant parameters. The a priori SIR is defined as,

ξk(m) =
λk
re(m)

λk
r�(m)

, (6)

where λk
re(m) = E

[∣∣Rk
e (m)

∣∣2] and λk
r�(m) = E

[∣∣Rk
� (m)

∣∣2] de-
note spectral variances of the early and late speech components, re-
spectively, both of which are to be estimated.

It is common practice to recursively estimate ξk(m) via the
decision-directed method [11] as,

ξ̂k(m) = η

∣∣R̂k
e (m− 1)

∣∣2
λ̂k
r�(m− 1)

+ (1− η)max[γk(m)− 1, 0], (7)

where η (0 ≤ η ≤ 1) is a smoothing constant that controls the
trade-off between interference reduction and transient distortion in-

troduced into the signal. The first term

∣∣R̂k
e (m−1)

∣∣2
λ̂k
r�

(m−1)
, represents the

estimate of ξk(m) from the previous time frame, while the second
term max[γk(m)−1, 0], is the maximum likelihood (ML) estimator
for ξk(m) and solely dependent on the current frame. The parameter
γk(m) is called the a posteriori SIR and is defined as,

γk(m) =
E
[∣∣Rk(m)

∣∣2]
λk
r�

. (8)

The two SIRs are related via γk(m) = ξk(m)+1. The recursive re-
lationship in (7) provides smoothness in the estimate of ξk(m) which
consequently helps eliminate the musical noise distortion. In prac-
tice, to further reduce distortions introduced by the spectral weight-
ing, the gain function Gk(m) is lower bounded by a constant gain
floor Gf .

The motivation behind employing a gain function in the form
of (5), is twofold. First, the parametric Wiener filtering [12] has
been successfully applied to a similar problem in the context of noisy
speech enhancement. In addition, it can be easily shown that com-
mon speech enhancement algorithms such as spectral subtraction
and maximum-likelihood methods, are special cases of the paramet-
ric Wiener filtering. Second, the two parameters α and β provide
more degrees of freedom and control over the late reverberation sup-
pression and speech distortion reduction. It has been shown in [13]
that the speech distortion introduced by speech enhancement algo-
rithms can result in a severe performance degradation for automatic
SID systems.

2.3. Late reverberation power estimation

In order to estimate the two SIRs, an estimate of the late reverbera-
tion spectral variance must be available. In [2], a simple statistical
model for the RIR was considered and an estimator for λk

r�(m) was
derived. The estimator is dependent on the T60, which can be esti-
mated directly from the reverberant data, albeit at the cost of a more
complex algorithm. This approach was further investigated in [5]
and [6] to accommodate for the estimation and reduction of additive
noise. In addition, a ML approach for T60 estimation was proposed
in [6].

Here, an alternative approach for the estimation of the late rever-
beration spectral variance is taken which obviates any need for direct
T60 estimation. Considering the smearing effects of the late rever-
beration on the speech signal, the power spectrum of the late speech
component can be assumed to be a smoothed and shifted version of
the reverberant speech power spectrum as [14],

λ̂k
r� = μ w(m− ρ) ∗ ∣∣Rk(m)

∣∣2 (9)

where the symbol ∗ denotes the convolution in the time domain,
w(m) is a smoothing function, and ρ = ne is the time threshold
between early and late components of the RIR. As noted earlier,
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ne is commonly set to a value within the 50-80 ms range, and is
independent of reverberation characteristics. The parameter μ is a
scaling factor that specifies the relative strength of the late speech
component.

Since RIRs have a decaying exponential shape, a right skewed
smoothing function with a long tail would be a reasonable choice
for w(m). Therefore, as in [14], Rayleigh distribution function is
adopted,

w(m) =

{
0, m ≤ −b
m+b
b2

exp
(

−(m+b)2

2b2

)
, m > −b

(10)

where b determines the overall spread of the smoothing function, and
is set in accordance with the time threshold between early and late
components of the RIR, ne.

3. EXPERIMENTS

Performance of the proposed blind spectral weighting technique
for suppression of late reverberation is evaluated in the context of:
1) GMM based closed-set SID experiments, and 2) GMM-UBM
speaker verification experiments [15]; SID accuracy and EER are
reported as performance measures, respectively. The proposed tech-
nique is integrated into the MFCC feature extraction framework as
a pre-processing stage, and performance is compared to that of the
baseline system with no pre-processing.

For closed-set SID experiments, training and test speech mate-
rial are obtained from the TIMIT corpus consisting of speech from
630 speakers including 192 female and 438 male speakers. There
are 10 sentences per speaker recorded under clean laboratory condi-
tions at a sampling rate of 16 kHz. A total of 8 sentences (∼ 24 s)
are used to train speaker models, while the remaining 2 sentences
(∼ 6 s) test the models. To simulate different reverberant condi-
tions, RIR samples extracted from the AIR database are convolved
with test material. Four RIRs with distinct source-to-microphone
distances (dSM ) and with T60 ranging from 0.11 s to 0.83 s are used
including studio booth, meeting, office, and lecture rooms. Further
information concerning the RIRs is summarized in Table 1. Here, a
32-mixture GMM SID system is trained on anechoic data for evalu-
ations.

For speaker verification experiments, speech material from
MultiRoom8 corpus are utilized. The MultiRoom8 database, which
is made available by AFRL, was designed to capture multi-session
audio impacted by environmental contamination, i.e., background
noise and room reverberation. It contains a development set with
a total of 100 speech files which are used for building the UBM,
7 different training-test conditions representing a range of distinct
reverberant and noisy mismatched scenarios, and a training-test
condition involving different communication channels, which is not
exploited in this study. Four rooms were used for data collection
including: small (5.3 × 3.6 m2), medium (11.3 × 3.6 m2), large
(14.6 × 12.9 m2), and a conference room. The rooms are labeled

Table 1. Properties of the four RIRs extracted from the AIR database
for experiments. dSM denotes the source-to-microphone distance.

Room Type Dimension (m3) dSM (m) T60 (s) DRR (dB)

Studio booth 3.0× 1.8× 2.2 1.0 0.11 8.78

Meeting 8.0× 5.0× 3.1 2.8 0.25 2.89

Office 5.0× 6.4× 2.9 3.0 0.48 -0.89

Lecture 10.8× 10.9× 3.15 10.2 0.83 -5.62
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Fig. 2. Performance of blind reverberation compensation front-ends
in terms of closed-set accuracy (%), obtained from SID experiments
on TIMIT corpus under anechoic and four different reverberant mis-
matched test conditions.

as Sm, Med, Lg, and Enroll, respectively. Except for the confer-
ence room where recordings were collected using only close-talking
microphones, for each environment, 6 uni- and omni-directional mi-
crophones located at a range of distinct distances from the speaker
were used for speech capture. Each session was recorded at least 1
week from the previous session for each speaker. In an interview-
like scenario, a total of 52 speakers were recorded, although not
each speaker is present for every room. The average length of the
recordings is approximately 3 minutes. Here, a 1024-mixture UBM
is built on the development set, and individual speaker models are
MAP adapted from the UBM.

To perform the spectral weighting, the reverberant signals are
transformed into the STFT domain using Hamming windowed
frames of 25 ms duration with a 10 ms skip rate. The a priori SIR is
estimated using the decision-directed approach (7) with a smoothing
factor η = 0.6. The time threshold between early and late com-
ponents of the RIRs is set to 50 ms which, considering the 10 ms
skip rate, corresponds to 5 frames. In order to find the optimum
parameters for the parametric gain function (5), speech data from
80 speakers, including 37 females and 43 males, from the TIMIT
corpus are used as the development set. It was found that setting
α = 2 and β = 2.5, on average yields the best performance across
the various reverberant mismatched conditions. The gain floor pa-
rameter Gf is fixed to 0.01 which is equivalent to a maximum
attenuation of −20 dB. In contrast to the findings reported in [14],
tuning the scaling factor μ, that specifies the relative strength of the
late speech component, seems to be very important for SID tasks.
Here, μ is set to 0.1, since larger values for this parameter will result
in speech distortion that is intolerable for the SID system, which in
turn can lead to a great drop in performance [13]. Standard MFCC
features are extracted from the processed spectra, and normalized to
a standard Gaussian distribution over a 3-second sliding window for
SID experiments.

4. RESULTS

Fig. 2 shows closed-set speaker identification accuracies obtained
by the GMM based system on TIMIT data under anechoic and four
distinct reverberant mismatched test conditions, with and without
the proposed blind spectral weighting (BSW) algorithm as the pre-
processing stage for the MFCC feature extraction. It is clear that
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incorporating BSW within the feature extraction framework results
in significant improvements in performance. An average absolute
improvement of 16.71 % is achieved over the baseline system with
plain MFCC features. For the studio booth test condition, improve-
ment is the smallest because the self-masking effect is dominant,
therefore the spectral weighting will not be very effective in this
case. However, under the remaining reverberant mismatched con-
ditions, improvements are significantly higher because the overlap-
masking effect has been the major source of performance degrada-
tion. The results obtained here indicate that, in line with the findings
in psychoacoustic studies (e.g., [1]) and when compared to the self-
masking effect, the overlap-masking effect has a greater impact on
performance of SID systems. Suppressing this effect can thus alle-
viate its adverse impact on SID performance.

To compare the performance of our BSW technique with other
blind reverberation compensation strategies, we performed the same
SID experiments using MFCC features extracted from data pre-
processed with the LTLSS [8], and Gammatone subband NMF [9].
Results are presented in Fig. 2. It is evident from the figure that
our technique consistently outperforms the other two strategies in
suppressing the reverberation effects on SID. Note that the system
performance with NMF under reverberant conditions is even worse
than the performance with plain MFCCs. This is due to the fact
that this method introduces a great amount of processing artifacts
intolerable for the SID system (confirmed through informal listening
experiments). In addition to the superior performance, there is no
need for signal reconstruction with our technique, as required with
both the LTLSS and NMF strategies.

Results for speaker verification experiments on the MultiRoom8
corpus are summarized in Table 2. Train-Test labels in the first col-
umn denote the room/microphone combinations. For instance, Lg5-
Sm4 implies that the speaker models are trained on data recorded in
the large room using microphone number 5, while the evaluation is
performed on material recorded in the small room using microphone
number 4. Consistent with the closed-set SID experiment outcomes,
employing the proposed BSW technique as a pre-processing stage
in the MFCC extraction has resulted in remarkable performance im-
provements. Here, an average absolute improvement of 3.16 % is
achieved over the baseline system with plain MFCC features. The
results also further confirm the superiority of our technique over the
other two blind reverberation compensation strategies [8], [9].

5. CONCLUSION

In this paper we proposed a blind spectral weighting (BSW) tech-
nique for alleviating the impact of late reverberation on performance
of SID systems. The technique is blind in the sense that prior knowl-

Table 2. Performance of blind reverberation compensation front-
ends in terms of EER (%), obtained from speaker verification exper-
iments on MultiRoom8 corpus.

Train-Test
EER [%]

MFCC MFCC-BSW MFCC-LTLSS MFCC-NMF

Lg5-Sm4 13.16 10.53 13.16 13.87

Sm4-Lg5 11.17 7.89 10.53 15.86

Enroll-Sm6 21.15 16.28 20.93 20.93

Enroll-Sm4 13.46 9.30 11.63 16.28

Med3-Sm3 11.67 10.26 14.91 12.82

Lg4-Med5 19.44 16.67 22.22 25.00

Med5-Sm5 10.93 7.96 10.66 10.66

edge of neither the anechoic signal nor the room impulse response is
required. In addition, the late reverberation spectral variance was es-
timated without the direct need for T60 estimation. It was confirmed
that incorporating the proposed BSW technique as a pre-processing
stage in the MFCC feature extraction framework results in signifi-
cant improvements in both automatic SID performance under simu-
lated and actual reverberant mismatched conditions. We believe that
this technique can potentially benefit other automatic speech appli-
cations, such as automatic speech recognition (ASR), under the same
mismatched conditions.
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