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ABSTRACT

In this paper, we present a general algorithmic framework based on
WFSTs for implementing a variety of discriminative training meth-
ods, such as MMI, MCE, and MPE/MWE. In contrast to the ordi-
nary word lattices, the transducer-based lattices are more amenable
to representing and manipulating the underlying hypothesis space
and have a finer granularity at the HMM-state level. The transduc-
ers are processed into a two-layer hierarchy: at a high level, it is
analogous to a word lattice, and each word transition embodies an
HMM-state subgraph for that word at a lower level. This hierar-
chy combined with the appropriate customization of the transduc-
ers leads to a flexible implementation for all of the training criteria
being discussed. The effectiveness of the framework is verified on
two speech recognition tasks: Resource Management, and AT&T
SCANMail, an internal voicemail-to-text task.
Index Terms: discriminative training, speech recognition, weighted
finite-state transducer.

1. INTRODUCTION

Over the past decade, discriminative training has achieved a signif-
icant performance improvement in various large vocabulary con-
tinuous speech recognition (LVCSR) systems. Representative dis-
criminate training criteria include maximum mutual information
(MMI) [1], minimum classification error (MCE) [2], and minimum
phone/word error (MPE/MWE) [3].

Recent research [4], [5], [6] showed that many such discrimina-
tive training criteria can be formulated in a unified objective function
form, where choices of the smoothing function, the gain function,
and the hypothesis space resolve to different discriminative training
criteria. The unified view of discriminative training highlights the
computational connections between these training criteria. It thus
facilitates the implementation of a general framework for discrimi-
native training, where various optimization techniques can be fairly
compared and their differences quantified.

In this paper, we present an algorithmic framework with suf-
ficient generality for implementing various discriminative training
methods using weighted finite-state transducers (WFSTs). With the
work in [7], the use of WFSTs has become a fundamental tool in
speech and language processing. In speech recognition, they allow
an elegant integration of knowledge sources such as the context de-
pendency, the pronunciation lexicon and the language model in a
precompiled and very efficient search network. Here, the power of
the WFSTs is leveraged to represent the lattice of the hypothesis
space to achieve a general discriminative training framework.

Compared with the ordinary word lattices for discriminative
training [4], [3], transducer-based lattices have the following ad-
vantages. First, many of the off-the-shelf operations and algorithms
established for WFSTs [8] can be directly applied to represent and

manipulate the lattices. The flexibility attached to the lattices will
considerably boost a general and efficient implementation of dis-
criminative training. Take the MCE training as an example, where
the hypothesis space should exclude the reference sequence. This
can be simply realized by taking the difference of the recognition
lattice and the reference sequence.

Moreover, the input symbols of our transducer-based lattice are
HMM states, acting as elementary units of the lattice. This makes
it more efficient in representing the hypothesis space than the or-
dinary word lattices, because given the similar size of HMM states
contained within the lattice, the HMM-state lattice will typically pro-
duce much more hypothesis sequences than the word lattices. Note
that the richness of the competing hypotheses plays a crucial role in
the discriminative training.

The use of transducer-based lattices for discriminative training
has actually been reported in the literature [9], [10], [11]. However,
most of these works focus on one or a few discriminative training
criteria, and the transducer is used as an ordinary word (or phone)
lattice. In this paper, to accommodate the calculation of various
substring-level errors, the transducer-based lattices are processed
into a two-layer hierarchy: at a high level, it is analogous to a word
lattice, and each word transition embodies an HMM-state subgraph
for that word at a lower level. A number of issues ensuring the
general implementation of discriminative training are addressed, in-
cluding disambiguating word tokens in the transducer-based lattices,
collecting statistics for different substring errors, and synchronizing
word labels with context-dependent HMM states.

The remainder of the paper is organized as follows. In Section
2, the unified discriminative training criterion is introduced. The
general training framework based on WFSTs and several implemen-
tation issues are described in Section 3 and Section 4, respectively.
Finally, we present the experimental results and conclusions in Sec-
tion 5 and Section 6, respectively.

2. UNIFIED VIEW OF DISCRIMINATIVE TRAINING

MMI [1], MCE [2], and MPE/MWE [3] represent three major forms
of discriminative training for speech recognition. Recent research
[4], [5] showed that many such discriminative training criteria can
be formulated in a unified objective function, which is related to the
weighted average of some predefined accuracy function over all hy-
pothesis sequences. Suppose we have a set of R training sentences,
where O(r) is the acoustic observations of the r-th training utterance

with the reference transcription s
(r)
ref . Then the unified discriminative

training criterion F for optimizing the acoustic model parameters Λ
can be expressed as [4]

F(Λ) =
R∑

r=1

f
(
log

∑
s PΛ(O

(r), s)A(s, s
(r)
ref )∑

s∈S(r) PΛ(O
(r), s)

)
(1)
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where PΛ(O, s) denotes the joint probability of an observation se-
quence O and a hypothesis sequence s, f(·) denotes the smoothing
function, and the gain function A(s, sref) measures the accuracy of
hypothesis s given its reference sref . S is the hypothesis space com-
prising a set of competing hypothesis sequences for the acoustic data
O. In the context of LVCSR, the hypothesis space is typically repre-
sented as a word lattice. As shown in [4], the particular choice of the
smoothing function f , the hypothesis space S, and the gain function
A(s, sref) resolves to different discriminative training criteria, three
of which are tabulated in Table 1 for comparison.

Table 1. Choice of parameters for different discriminative training
criteria.

Criterion f(x) Hyp. space S Gain

MMI x all δ(s, sref)

MCE −1
1+exp(�x)

all but sref δ(s, sref)

MPE/MWE exp(x) all A(s, sref)

The unified view of discriminative objective functions highlights
the computational connections between various discriminative train-
ing approaches. The key difference between these criteria comes
from the definition of the gain function A(s, sref). MMI and MCE
uses the Kronecker delta gain function δ(s, sref), which amounts
to measuring the string-level accuracy, whereas the gain functions
of MPE/MWE [3] exploit the substring-level accuracy, which ap-
pears more pertinent to the performance evaluation metric. In addi-
tion, MCE differs from the other criteria in that its hypothesis space
should exclude the reference sequence sref .

One popular optimization method for discriminative training
is the extended Baum-Welch (EBW) algorithm [3]. The param-
eter re-estimation relies on two lattice-based statistics: the pos-
terior probability passing through arc e of the lattice S, γ(e) =
∑

s∈S:e∈s PΛ(O,s)
∑

s∈S PΛ(O,s)
, and the average gain over the hypotheses passing

through arc e, c(e) =
∑

s∈S:e∈s PΛ(O,s)A(s,sref )∑
s∈S:e∈s PΛ(O,s)

. The determination

of γ(e) is analogous to the state posterior probability in an HMM,
and can be evaluated in a standard forward-backward procedure.
In [3], c(e) is calculated in a similar forward-backward fashion
under an appropriate assumption of the gain function A(s, sref).
Section 3.4 will give a detailed derivation of c(e) within the WFST
framework.

3. DISCRIMINATIVE TRAINING WITH WFSTS

In this section, we present a WFST-based framework with sufficient
generality for statistics collection and parameter optimization of dif-
ferent discriminative training criteria. The AT&T FSM library [8] is
used for the representation and manipulation of WFSTs.

3.1. Weighted Finite-State Transducers
A WFST T over a semiring K can be defined as a 8-tuple T =
(Σ,Δ, Q, I, F,E, λ, ρ), where Σ and Δ are the respective input and
output alphabets, Q is a finite set of states, I ⊆ Q and F ⊆ Q are
the respective sets of initial states and final states, E ⊆ Q × Σ ×
Δ × K × Q is a finite set of arcs, and λ : I �→ K and ρ : F �→ K

are the initial and final state weight assignments, respectively. Some
algorithms require a potential function τ : Q �→ R associated with
each state.

Given an arc e ∈ E, we denote its input label by i[e], its source
state p[e], its destination state n[e], its weight w[e], and its output
label o[e]. A path s = ek1 is a sequence of consecutive arcs such
that n[ei−1] = p[ei], i = 2, . . . , k. We denote by S(q, q′) the set

of paths from q to q′, and S(q, e, q′) the set of paths from q to q′

passing through arc e. The weight of a path, or a finite set of paths,
can be defined through the ⊗ and ⊕ semiring operations. Since in
this paper we are only concerned with the probability semiring in
which weights represent probabilities, we express the weight opera-
tions directly using the product and sum rules of probability for the
notational simplicity. As such, the weight of the path set S is given
by w[S] =

∑
s∈S

∏
e∈s w[e].

3.2. Representing Lattices with WFSTs
In speech recognition, WFSTs allow an elegant integration of knowl-
edge sources such as the context dependency, the pronunciation lex-
icon, and the language model, in a precompiled and very efficient
search network.

It is also natural to represent the lattice, generated via a recog-
nition pass through the search network, with a transducer. Unlike
the ordinary word lattices, the transducer-based lattice has a finer
granularity at the HMM-state level. Specifically, for each arc, the
input label is an HMM state, the output label is a word or a null
symbol (denoted by ε), and the weight is the product of the acoustic
and language model probabilities w[e] = PΛ(oe, e). The temporal
boundaries of the arcs are indicated by assigning time instances to
the state potentials τ .

3.3. Disambiguating Word Tokens in WFST-Based Lattices
To allow such lattices for a general discriminative training scheme,
the main problem left is how to reproduce the alignment information
between words and their constituent arcs, such that the substring-
level error for, say, MPE/MWE can be calculated efficiently. Note
that this alignment is not readily available in such a transducer, as
ambiguities arise with ε-output arcs. First, they may be associated
with different word identities from different paths; second, even in
one single path, an ε-output arc may be a part of the previous output
word or the next output word.

The second issue can be eliminated by deliberately generating
the recognition lattices in two passes. First, we produce word-level
lattices using an approximate lattice generation algorithm [12]. In
a second pass, these word lattices are used as the “grammar”, com-
posed by the pronunciation lexicon L and the context-dependency
transducer C, to generate the HMM-state lattices. Because the lexi-
con L always places the word output labels at the beginning arcs of
pronunciations [7], and the composed search network in the second
pass is not optimized, the resulting HMM-state lattice will retain the
same property as the lexicon L, that is, word tokens always begin
with (and end before) a non-ε-output arc. Moreover, if a state ini-
tiates a word token with a non-ε-output outgoing arc, its remaining
outgoing arcs will also output non-ε labels. Hence, word initial states
(also being word final states) can be considered as properties of the
lattice, regardless of specific words.

It is not trivial to handle the alignment ambiguity due to multiple
paths. First, we note that it suffices to distinguish the word tokens
that disagree in the values required for calculating the substring-level
errors, as discussed later in Section 3.4. These values, called con-
text labels l, can include word identities, temporal boundaries, and
even phone sequences. We propose a token disambiguation algo-
rithm such that the arcs in the processed transducer have determin-
istic context labels. Every arc e is tagged with its context label l as
(e, l). During a graph forward pass, the context labels are initialized
to the word initial arcs, and passed on by the following states and
arcs towards the word final arcs. If the context labels of the arcs
reaching the same state q conflict, q will be replicated to account for
different contexts. Each copy (q, l) of the state q will have the same
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Fig. 1. Example of the subgraph of a word “read” in the converted
lattice, where the context label is word identity. For convenience,
the transducer shows a mapping from phones to words, rather than
a mapping from HMM states to words actually used. Each arc is
labeled with “input:output”, with weights omitted. The arcs com-
posing the subgraph are marked with solid lines.

outgoing arcs as q, but a subset of the incoming arcs of q that are
tagged with context l. Word final states are replication-free, as they
do not need to carry forward the context labels. Hence, the disam-
biguation procedure would not lead to a combinatorial explosion.

As a consequence, the converted lattice presents a two-layer hi-
erarchy. It is analogous to a word lattice at a high level, and each
word transition embodies an HMM-state subgraph for that word.
The subgraphs, representing the words with distinct context infor-
mation, do not intertwine with each other. A simple example of the
subgraph is illustrated in Fig. 1.

3.4. Statistics Collection with WFSTs
One difficulty that arises in the model re-estimation of the MPE/MWE
training is to determine c(e), the average gain of all the paths pass-
ing through arc e. As shown in [3], c(e) can be computed effi-
ciently using the forward-backward algorithm, provided the gain
function v[s] = A(s, sref) of any path s can be decomposed into
a sum of independent terms associated with its constituent arcs,
v[s] =

∑
e∈s v[e]. We have

c(e) =

∑
s∈S(I,e,F ) w[s]v[s]∑

s∈S(I,e,F ) w[s]
= ᾱ(p[e]) + v[e] + β̄(n[e]) (2)

where ᾱ(q) and β̄(q) represent the average gain of partial paths lead-
ing to and leaving from state q, respectively, expressed as

ᾱ(q) =
1

α(q)

∑
s∈S(I,q)

w[s]v[s]; β̄(q) =
1

β(q)

∑
s∈S(q,F )

w[s]v[s]

in which α(q) =
∑

s∈S(I,q) w[s] and β(q) =
∑

s∈S(q,F ) w[s] de-
note the total weights of the partial paths leading to and leaving from
state q, respectively. The quantities α(q), β(q), ᾱ(q), and β̄(q) can
be evaluated recursively in the forward-backward passes [3].

The final consideration is that the above formulae assume that
the gain function is decomposed to the HMM-state level, which does
not readily fit the substring-level (phone or word) gain function de-
fined by MPE/MWE. Take MWE as an example, where the accuracy
of a hypothesis word z is defined as [3]

v[z] = max
z′∈sref

{
−1 + 2overlap(z, z′) if o[z] = o[z′]
−1 + overlap(z, z′) otherwise

(3)

where overlap(z, z′) is defined as the time overlap between z and a
reference word z′ normalized by the length of z′.

To directly calculate the average word accuracy using the HMM-
state lattices, we can re-decompose the word-level accuracies v[z]
into HMM-state levels v[e]. First, we perform the token disambigua-

tion, as shown in Section 3.2, so that the accuracy of word tokens can
be deterministically calculated. The context label is defined as the
pair of the word identity and the word start time. With the tokens dis-
ambiguated and the context labels passed onto the word final arcs,
we see that all required information to calculate the word accuracy
(3) are contained in the word final arc ef . They are the word label
o[z[ef ]], the word start time τ(p[initial arc[z[ef ]]]), and the word
end time τ(n[ef ]), where z[e] denotes a word token containing the
arc e. Thus, to calculate the average word accuracy, equivalently the
accuracy of an HMM-state arc e can be defined as

v[e] =

{
v[z[e]] if e is the final arc of z[e]

0 otherwise
(4)

4. IMPLEMENTATION ISSUES
4.1. Substring Error
So far, we have discussed the issue of the statistics collection us-
ing the word-level error for MWE as an example. To account for
MPE, whose gain function is defined similar to the one for MWE (3)
except for using phone tokens, we only need to preprocess the lat-
tice by changing its word output labels to phone labels. Then the
transducer-based lattice at its high level becomes a phone lattice, and
the foregoing procedure will work the same way for MPE. In fact,
as the labels of the transducers are generic, the discriminative train-
ing algorithm can be easily configured to minimize the error rate of
context-dependent (CD) phones, HMM states, and other substrings.

4.2. Synchronizing Word Labels with HMM States
There is a potential problem that may degrade the performance of the
MWE training due to the use of the context-dependency transducer
C. As in [7], the transducer C for a triphone context introduces a
single-phone shift between a triphone and its context-independent
counterpart to avoid the matching delay in the composed search net-
work. This produces a recognition lattice where word output labels
are marked on arcs one phone before they truly begin, and thus lead-
ing to a bias in calculating the word accuracy for MWE. Let us refer
to the first HMM-state arc of a phones as a prime arc. Then to over-
come the bias, we can push forward the output labels on the prime
arcs to their following prime arcs. However, conflictions may arise if
a prime arc takes in multiple preceding prime arcs that do not agree
in their output labels. A procedure similar to the token disambigua-
tion described in Section 3.2 is used to eliminate the conflictions.
The context label of an arc is now the output label of its preceding
prime arcs. Then the context labels can be deterministically passed
towards and rewrite the output labels of the following prime arcs.

4.3. MCE Training
For MCE, the lattice of the hypothesis space should exclude the ref-
erence sequence. A direct implementation is by taking the difference
between the recognition lattice and the reference sequence. Another
approach is to keep using the recognition lattice as the denominator
lattice, but subtract the contribution of the reference sequence from
the denominator statistics in the statistics collection stage [5]. Both
approaches are supported in the framework.

5. EXPERIMENTS AND RESULTS

The unified discriminative training algorithm has been evaluated on
two tasks. The first is a speech recognition task on DARPA resource
management (RM) database with medium-size vocabulary, and the
second is a large-scale telephone speech recognition using the AT&T
SCANMail [13] database.
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Fig. 2. WER (%) as a function of the iterations for different discrim-
inative training criteria on the SCANMail database.

5.1. Experiments on Resource Management (RM) Database
Initial experiments were carried out on the 991-word DARPA RM
database. The training data are the NIST/RM SI-109 training set
consisting of 3,990 utterances from 109 native American speakers,
and the test data consist of 1,200 utterances. Each feature frame
is characterized by a 39-dimensional feature vector, including the
12-dimensional MFCCs plus log energy, and their first and second
derivatives. The state-clustered cross-word triphone acoustic models
are built with the AT&T FSM toolkit for speech recognition. This
produces a total of 1,802 distinct states and 10,808 Gaussian com-
ponents, with an average of 6 Gaussians per state. The ML base-
line using the RM word-pair grammar yields word error rate (WER)
of 4.2%.

Table 2. Comparison of discriminative training criteria on RM
database.

MLE MMI MCE MPE MWE

WER (%) 4.2 3.9 3.8 3.4 3.5
Rel. red. (%) — 7.1 9.5 19.1 16.7

The recognition performance of four discriminative training cri-
teria, MMI, MCE, MPE, and MWE, are given in Table 2. All of
the criteria achieve significant improvements over the ML baseline.
MPE yields the lowest WER (3.4%) among all the criteria, with
19.1% relative improvement over the ML baseline.

5.2. Experiments on SCANMail Database
The proposed framework has been evaluated on a large-scale tele-
phone speech recognition task using the AT&T SCANMail [13]
database. The task contains the voicemail messages received by 140
AT&T employees. The training and test sets contain 200 hours and
2 hours of speech, respectively. For each audio frame, 21 cepstral
coefficients and energy are extracted from each audio frame, and
mean normalized. Then 11 consecutive frames are projected onto
a 60-dimensional feature space by Heteroscedastic Discriminant
Analysis (HDA). The state-clustered cross-word triphone acoustic
models are built. This produces a total of 6.9k distinct states and
161k Gaussian components, with an average of 24 Gaussians per
state. The system uses a 31k word vocabulary, and a trigram lan-
guage model trained on 700k words. The WER of the ML baseline
is 29.2%.

Fig. 2 depicts the changes of WER over iterations for the four
discriminative training criteria, where their best recognition perfor-

mance are detailed in Table 3. MPE and MWE yield the best recog-
nition performance, 4.8% relative error rate reduction compared with
the ML baseline. Also, MWE behaves more stable than MPE in the
course of the re-estimation procedure.

Table 3. Comparison of discriminative training criteria on the
SCANMail database.

MLE MMI MCE MPE MWE

WER (%) 29.2 28.1 28.0 27.8 27.8
Rel. red. (%) — 3.8 4.1 4.8 4.8

6. CONCLUSION

We have described a general framework for implementing var-
ious discriminative training methods, such as MMI, MCE, and
MPE/MWE. The lattice of the hypothesis space was represented
with WFSTs, and the power of WFSTs was leveraged, leading to a
general implementation of discriminative training. Experiments on
the RM and AT&T SCANMail recognition tasks showed that all of
the criteria yielded significant improvements over the ML baseline.
Finally, it should be pointed out that the study mainly focuses on
the effectiveness of using WFSTs for unified discriminative train-
ing, rather than a formal performance comparison. To compare
and conclude these different training criteria in a rigorous manner
necessitates a series of experiments with different settings and on
various recognition tasks, which will be one of our future tasks.
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