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ABSTRACT

We describe a lattice generation method that is exact, i.e. it satisfies
all the natural properties we would want from a lattice of alterna-
tive transcriptions of an utterance. This method does not introduce
substantial overhead above one-best decoding. Our method is most
directly applicable when using WFST decoders where the WFST is
“fully expanded”, i.e. where the arcs correspond to HMM transi-
tions. It outputs lattices that include HMM-state-level alignments as
well as word labels. The general idea is to create a state-level lattice
during decoding, and to do a special form of determinization that
retains only the best-scoring path for each word sequence. This spe-
cial determinization algorithm is a solution to the following problem:
Given a WFST A, compute a WFST B that, for each input-symbol-
sequence of A, contains just the lowest-cost path through A.

Index Terms— Speech Recognition, Lattice Generation

1. INTRODUCTION

In Section 2 we give a Weighted Finite State Transducer (WFST)
interpretation of the speech-recognition decoding problem, in order
to introduce notation for the rest of the paper. In Section 3 we define
the lattice generation problem, and in Section 4 we review previous
work. In Section 5 we give an overview of our method, and in Sec-
tion 6 we summarize some aspects of a determinization algorithm
that we use in our method. In Section 7 we give experimental re-
sults, and in Section 8 we conclude.

2. WFSTS AND THE DECODING PROBLEM

The graph creation process we use in our toolkit, Kaldi [1], is very
close to the standard recipe described in [2], where the Weighted
Finite State Transducer (WFST) decoding graph is

HCLG = min(det(H ◦ C ◦ L ◦ G)), (1)
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Fig. 1. Acceptor U describing the acoustic scores of an utterance

where H , C, L and G represent the HMM structure, phonetic
context-dependency, lexicon and grammar respectively, and ◦ is
WFST composition (note: view HCLG as a single symbol). For
concreteness we will speak of “costs” rather than weights, where a
cost is a floating point number that typically represents a negated
log-probability. A WFST has a set of states with one distinguished
start state1; each state has a final-cost (or ∞ for non-final states);
and there is a set of arcs between the states, where each arc has an
input label, an output label, and a weight (just think of this as a cost
for now). In HCLG , the input labels are the identifiers of context-
dependent HMM states, and the output labels represent words. For
both the input and output labels, the special symbol ε may appear,
meaning “no label is present.”

Imagine we want to “decode” an utterance of T frames, i.e. we
want to find the most likely word sequence and its corresponding
state-level alignment. A WFST interpretation of the decoding prob-
lem is as follows. We construct an acceptor, or WFSA, as in Fig. 1
(an acceptor is represented as a WFST with identical input and out-
put symbols). It has T+1 states, with an arc for each combination
of (time, context-dependent HMM state). The costs on these arcs
correspond to negated and scaled acoustic log-likelihoods. Call this
acceptor U . Define

S ≡ U ◦ HCLG , (2)

which we call the search graph of the utterance. It has approximately
T+1 times more states than HCLG itself. The decoding problem is
equivalent to finding the best path through S. The input symbol se-
quence for this best path represents the state-level alignment, and the
output symbol sequence is the corresponding sentence. In practice
we do not do a full search of S, but use beam pruning. Let B be
the searched subset of S, containing a subset of the states and arcs
of S obtained by some heuristic pruning procedure. When we do
Viterbi decoding with beam-pruning, we are finding the best path

1This is the formulation that corresponds best with the toolkit we use.
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through B. Since the beam pruning is a part of any practical search
procedure and cannot easily be avoided, we will define the desired
outcome of lattice generation in terms of the visited subset B of S.

3. THE LATTICE GENERATION PROBLEM

There is no generally accepted single definition of a lattice. In [3]
and [4], it is defined as a labeled, weighted, directed acyclic graph
(i.e. a WFSA, with word labels). In [5], time information is also
included. In the HTK lattice format [6], phone-level time alignments
are also supported (along with separate language model, acoustic
and pronunciation-probability scores), and in [7], HMM-state-level
alignments are also produced. In our work here we will be produc-
ing state-level alignments; in fact, the input-symbols on our graph,
which we call transition-ids, are slightly more fine-grained than
acoustic states and contain sufficient information to reconstruct the
phone sequence.

There is, as far as we know, no generally accepted problem state-
ment for lattice generation, but all the the authors we cited seem
to be concerned with the accuracy of the information in the lattice
(e.g. that the scores and alignments are correct) and the complete-
ness of such information (e.g. that no high-scoring word-sequences
are missing). The simplest way to formalize these concerns is to ex-
press them in terms of a lattice pruning beam α > 0 (interpret this
as a log likelihood difference).

• The lattice should have a path for every word sequence within
α of the best-scoring one.

• The scores and alignments in the lattice should be accurate.

• The lattice should not contain duplicate paths with the same
word sequence.

We need to be a little more precise about what we mean by the scores
and alignments being “accurate”. Let the lattice be L. The way we
would like to state this requirement is:

• For every path in L, the score and alignment corresponds to
the best-scoring path in B for the corresponding word se-
quence2.

The way we actually have to state the requirement in order to get an
efficient procedure is:

• For every word-sequence in B within α of the best one, the
score and alignment for the corresponding path in L is accu-
rate.

• All scores and alignments in L correspond to actual paths
through B (but not always necessarily the best ones).

The issue is that we want to be able to prune B before generating a
lattice from it, but doing so could cause paths not within α of the best
one to be lost, so we have to weaken the condition. This is no great
loss, since regardless of pruning, any word-sequence not within α of
the best one could be omitted altogether, which is the same as being
assigned a cost of ∞). By “word-sequence” we mean a sequence of
whatever symbols are on the output of HCLG . In our experiments
these output symbols represent words, but silences do not appear as
output symbols (they are represented via alternative paths in L).

4. PREVIOUS LATTICE GENERATION METHODS

Lattice generation algorithms tend to be closely linked to particular
types of decoder, but are often justified by the same kinds of ideas.
A common assumption underlying lattice generation methods is the

2Or one of the best-scoring paths, in case of a tie.

word-pair assumption of [5]. This is the notion that the time bound-
ary between a pair of words is not affected by the identity of any ear-
lier words. In a decoder in which there is a different copy of the lexi-
cal tree for each preceding word, assuming the word-pair assumption
holds, in order to generate an accurate lattice, it is sufficient to store
a single Viterbi back-pointer at the word level; the entire set of such
back-pointers contains enough information to generate the lattice.
Authors who have used this type of lattice generation method [5, 8]
have generally not been able to evaluate how correct the word-pair
assumption is in practice, but it seems unlikely to cause problems.
Such methods are not applicable for WFST based decoders anyway.

The lattice generation method described in [3] is applicable to
decoders that use WFSTs [2] expanded down to the C level (i.e.
CLG), so the input symbols represent context-dependent phones.
In WFST based decoding networks, states normally do not have a
unique one-word history, but the authors of [3] were able to satisfy
a similar condition at the phone level. Their method was to store
a single Viterbi back-pointer at the phone level; use this to create a
phone-level latice; prune the resulting lattice; project it to leave only
word labels; and then remove ε symbols and determinize. Note that
the form of pruning referred to here is not the same as beam pruning
as it takes account of both the forward and backward parts of the
cost. The paper also reported experiments with an accurate, “refer-
ence” method that did not require any phone-pair assumption; these
experiments showed that the main method they were describing had
almost the same lattice oracle error rate as the reference method.
However, the experiments did not evaluate how much impact the as-
sumption had on the accuracy of the scores, and this information
could be important in some applications.

The lattice generation algorithm that was described in [7] is ap-
plicable to WFSTs expanded down to the H level (i.e. HCLG), so
the input symbols represent context-dependent states. It keeps both
scores and state-level alignment information. In some sense this al-
gorithm also relies on the word-pair assumption, but since the copies
of the lexical tree in the decoding graph do not have unique word
histories, the resulting algorithm has to be quite different. Viterbi
back-pointers at the word level are used, but the algorithm keeps
track of not just a single back-pointer in each state, but the N best
back-pointers for the N top-scoring distinct word histories. There-
fore, this algorithm has more in common with the sentence N-best
algorithm than with the Viterbi algorithm. By limiting N to be quite
small (e.g. N=5), the algorithm was made efficient, but at the cost
of losing word sequences that would be within the lattice-generation
beam.

5. OVERVIEW OF OUR ALGORITHM

5.1. Version without alignments
In order to explain our algorithm in the easiest way, we will first
explain how it would be if we did not keep the alignment informa-
tion, and were storing only a single cost (i.e. the total acoustic plus
language-model cost). This is just for didactic purposes; we have not
implemented this simple version. In this case, our algorithm would
be quite similar to [3], except at the state level rather than the phone
level. We actually store forward rather than backward pointers: for
each active state on each frame, we create a forward link record for
each active arc out of that state; this points to the record for the des-
tination state of the arc on the next frame (or on the current frame,
for ε-input arcs). As in [3], at the end of the utterance, we prune the
resulting graph to discard any paths that are not within the beam α
of the best cost. Let the pruned graph be P , i.e.

P = prune(B,α), (3)
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where B is the un-pruned state-level lattice. We project on the output
labels (i.e. we keep only the word labels), then remove ε arcs and
determinize. In fact, we use a determinization algorithm that does ε
removal itself.

As in [3], to save memory, we actually do the pruning period-
ically rather than waiting for the end of the file (we do it every 25
frames). Our method is equivalent to their method of linking all cur-
rently active states to a “dummy” final state and then pruning in the
normal way. However, we implement it in such a way that the prun-
ing algorithm does not always have to go back to the beginning of
the utterance. For each still-active state, we store the cost difference
between the best path including that state, and the best overall path.
This quantity does not always change between different iterations of
calling the pruning algorithm, and when we detect that these quanti-
ties are unchanged for a particular frame, the pruning algorithm can
stop going backward in time.

After the determinization phase, we prune again using the beam
α. This is needed because the determinization process can intro-
duce a lot of unlikely arcs. In fact, for particular utterances, the
determinization process can cause the lattice to expand enough to
exhaust memory. To deal with this, we currently just detect when
determinization has produced more than a pre-set maximum number
of states, then we prune with a tighter beam and try again.

This “simple” version of the algorithm produces an acyclic, de-
terministic WFSA with words as labels. This is sufficient for appli-
cations such as language-model rescoring.

5.2. Keeping separate graph and acoustic costs

A fairly trivial extension of the algorithm described above is to store
separately the acoustic costs and the costs arising from HCLG . This
enables us to do things like generating output from the lattice with
different acoustic scaling factors. We refer to these two costs as the
graph cost and the acoustic cost, since the cost in HCLG is not just
the language model cost but also contains components arising from
transition probabilities and pronunciation probabilities. We imple-
ment this by using a semiring that contains two real numbers, one
for the graph and one for the acoustic costs; it keeps track of the two
costs separately, but its ⊕ operation returns whichever pair has the
lowest sum of costs (graph plus acoustic).

Formally, if each weight is a pair (a, b), then (a, b) ⊗ (c, d) =
(a+c, b+d), and (a, b) ⊕ (c, d) is equal to (a, b) if a+b < c+d or
if a+b = c+d and a−b < c−d, and otherwise is equal to (c, d).
This is equivalent to the normal lexicographic semiring (see [9]) on
the pair ((a+b), (a−b)).

5.3. Keeping state-level alignments

It is useful for various purposes, e.g. discriminative training and
certain kinds of acoustic rescoring, to keep the state-level alignments
in the lattices. We will now explain how we can make the alignments
“piggyback” on top of the computation defined above, by encoding
them in a special semiring.

First, let us define Q = inv(P ), i.e. Q is the inverted, pruned
state-level lattice, where the input symbols are the words and the out-
put symbols are the p.d.f. labels. We want to process Q in such a way
that we keep only the best path through it for each word sequence,
and get the corresponding alignment. This is possible by defining
an appropriate semiring and then doing normal determinization. We
shall ignore the fact that we are keeping track of separate graph and
acoustic costs, to avoid complicating the present discussion.

We will define a semiring in which symbol sequences are en-
coded into the weights. Let a weight be a pair (c, s), where c is a
cost and s is a sequence of symbols. We define the ⊗ operation as

(c, s) ⊗ (c′, s′) = (c + c′, (s, s′)), where (s, s′) is a concatenation
of s and s′. We define the ⊕ operation so that it returns whichever
pair has the smallest cost: that is, (c, s) ⊕ (c′, s′) equals (c, s) if
c < c′, and (c′, s′) if c > c′. If the costs are identical, we can-
not arbitrarily return the first pair because this would not satisfy the
semiring axioms. In this case, we return the pair with the shorter
string part, and if the lengths are the same, whichever string appears
first in dictionary order.

Let E be an encoding of the inverted state-level lattice Q as de-
scribed above, with the same number of states and arcs; E is an
acceptor, with its symbols equal to the input symbol (word) on the
corresponding arc of Q, and the weights on the arcs of E containing
both the weight and the output symbol (p.d.f.), if any, on the cor-
responding arcs of Q. Let D = det(rmeps(E)). Determinization
will always succeed because E is acyclic (as long as the original
decoding graph HCLG has no ε-input cycles). Because D is de-
terministic and ε-free, it has only one path for each word sequence.
Determinization preserves equivalence, and equivalence is defined
in such a way that the ⊕-sum of the weights of all the paths through
E with a particular word-sequence, must be the same as the weight
of the corresponding path through D with that word-sequence. It is
clear from the definition of ⊕ that this path through D has the cost
and alignment of the lowest-cost path through E that has the same
word-sequence on it.

5.4. Summary of our algorithm
During decoding, we create a data-structure corresponding to a full
state-level lattice. That is, for every arc of HCLG , we traverse on
every frame, we create a separate arc in the state-level lattice. These
arcs contain the acoustic and graph costs separately. We prune the
state-level graph using a beam α; we do this periodically (every 25
frames) but this is equivalent to doing it just once at the end, as in [3].
Let the final pruned state-level lattice be P . Let Q = inv(P ), and
let E be an encoded version of Q as described above (with the state
labels as part of the weights). The final lattice is

L = prune(det(rmeps(E)), α). (4)

The determinization and epsilon removal are done together by a sin-
gle algorithm that we will describe below. L is a deterministic,
acyclic weighted acceptor with the words as the labels, and the graph
and acoustic costs and the alignments encoded into the weights. The
costs and alignments are not “synchronized” with the words.

6. DETAILS OF OUR DETERMINIZATION ALGORITHM

We implemented ε removal and determinization as a single algorithm
because ε-removal using the traditional approach would greatly in-
crease the size of the state-level lattice (this is mentioned in [3]). Our
algorithm uses data-structures specialized for the particular type of
weight we are using. The issue is that the determinization process
often has to append a single symbol to a string of symbols, and the
easiest way to do this in “generic” code would involve copying the
whole sequence each time. Instead we use a data structure that en-
ables this to be done in linear time (it involves a hash table).

We will briefly describe another unique aspect of our algorithm.
Determinization algorithms involve weighted subsets of states, e.g.:

S = {(s1, w1), (s2, w2), . . .}. (5)

Let this weighted subset, as it appears in a conventional determiniza-
tion algorithm with epsilon removal, be the canonical representation
of a state. A typical determinization algorithm would maintain a
map from this representation to a state index. We define a minimial
representation of a state to be like the canonical representation, but
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Fig. 2. Lattice properties, varying lattice beam α (Viterbi pruning
beam fixed at 15)

only keeping states that are either final, or have non-ε arcs out of
them. We maintain a map from the minimal representation to the
state index. We can show that this algorithm is still correct (it will
tend to give more minimal output). As an optimization for speed,
we also define the initial representation to be the same type of sub-
set, but prior to following through the ε arcs, i.e. it only contains
the states that we reached by following non-ε arcs from a previous
determinized state. We maintain a separate map from the initial rep-
resentation to the output state index; think of this as a “lookaside
buffer” that helps us avoid the expense of following ε arcs.

Since submitting this paper, we have become aware of [10],
which solves the exact same problem for a different purpose. They
use a semiring which is more complicated than ours (the string part
of the semiring becomes a structured object with parentheses). They
use this semiring instead of the one we describe here, because in our
semiring the ⊕-sum of two weights does not necessarily left-divide
the weights, and this is a problem for a typical determinization al-
gorithm. We bypass this problem by defining a “common divisor”
operation � with the right properties (it ⊕-adds the weight part and
returns the longest common prefix of the string part). We use this
instead of ⊕ when finding divisors in the determinization algorithm.

7. EXPERIMENTAL RESULTS

We do not compare with any other algorithms, as [5, 8, 3] are de-
signed for different types of decoders than ours, and the lattices
contain less information, making comparisons hard to interpret; the
algorithm of [7] has similar requirements and outputs as ours, but
besides being inexact, it is bound to be slower due to the need to
store N back-pointers, so we did not view it as worthwhile to do the
experiment.

We report experimental results on the Wall Street Journal
database of read speech. Our system is a standard mixture-of-
Gaussians system trained on the SI-284 training data; we test on
the November 1992 evaluation data. We generated lattices with
the bigram language model supplied with the WSJ database, and
for rescoring experiments we use the trigram language model. The
acoustic scale was 1/16 for first-pass decoding and 1/15 for LM
rescoring. For simplicity, we used a decoder that does not support
a “maximum active states” option, so the only variables to consider
are the beam used in the Viterbi beam search, and the separate beam
α used for lattice generation.

Figure 2 shows how the lattice properties change as we vary α,
with the Viterbi beam fixed at 15; Figure 3 varies the Viterbi decod-
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ing beam,leaving α fixed at 7. Lattice density is defined as the aver-
age number of arcs crossing each frame. We get all the improvement
from LM rescoring by increasing α to 4, and time taken increases
rapidly when α > 8, so we recommend roughly 4 < α < 8 for
LM rescoring purposes. We do not display the real-time factor of
the non-lattice-generating decoder on this data (2.26xRT) as it was
actually slower than the lattice generating decoder; this is possibly
due to the overhead of reference counting. Out of vocabularly words
(OOVs) provide a floor on the lattice oracle error rate: of 333 test ut-
terances, 87 contained at least one OOV word, yet only 93 sentences
(6 more) had oracle errors with α = 10.

8. CONCLUSIONS

We have described a lattice generation method that is to our knowl-
edge the first efficient method that does not rely on the word-pair
assumption of [5]. It includes an ingenious way of obtaining HMM-
state-level alignment information via determinization in a specially
designed semiring.
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[4] H. Sak, M. Saraçlar, and T. Güngör, “On-the-fly lattice rescoring for
real-time automatic speech recognition,” in Proc. Interspeech, 2010.

[5] S. Ortmanns and H. Ney, “A Word Graph Algorithm for Large Vo-
cabulary Continuous Speech Recognition,” Computer Speech and Lan-
guage, vol. 11, pp. 43–72, 1997.

[6] S. Young, G. Evermann, et al., The HTK Book (for version 3.4), Cam-
bridge University Engineering Department, 2009.

[7] G. Saon, D. Povey, and G. Zweig, “Anatomy of an extremely fast
LVCSR decoder,” in Proc. Interspeech, 2005.

[8] J.J. Odell, The use of context in large vocabulary speech recognition,
Ph.D. thesis, Cambridge University Engineering Dept., 1995.

[9] B. Roark, R. Sproat, and I. Shafran, “Lexicographic semirings for exact
automata encoding of sequence models,” in Proc. ACL-HLT, 2011,
Portland, OR, 2011, pp. 1–5.

[10] I. Shafran, R. Sproat, M. Yarmohammadi, and Brian Roark, “Effi-
cient determinization of tagged word lattices using categorial and lexi-
cographic semirings,” in Proc. ASRU, 2011, Hawai’i, 2011.

4216


