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ABSTRACT

In this paper we perform a comparison of lookahead composition
and on-the-fly hypothesis rescoring using a common decoder. The
results on a large vocabulary speech recognition task illustrate the
differences in the behaviour of these algorithms in terms of error rate,
real time factor, memory usage and internal statistics of the decoder.
The evaluations were performed when the decoder was operated at
either the state or arc level. The results show the dynamic approaches
also work well at the state level even though there is greater dynamic
construction cost.

Index Terms— Speech recognition, WFST, on-the-fly compo-
sition

1. INTRODUCTION

1.1. WFSTs for Speech Recognition

In recent years the Weighted Finite State Transducer (WFST) based
approach to speech recognition search space construction and decod-
ing [1] has become very popular. One of the advantages of the WFST
framework is the formal manner each of the knowledge sources can
be represented in a consistent fashion. These knowledge sources can
then be composed together and optimized for speed and size ahead
of decoding.

Often the recognition cascade is constructed from the following
components; the Language Model G which represents the recog-
nition grammar, the lexicon L which is built from the pronunciation
dictionary and maps from phoneme sequences to words, a transducer
C that converts context-dependent phonemes to context-independent
phonemes, and optionally the acoustic models H . In the experiments
described in this paper, the decoder searches a cascade that is con-
structed according to:

π(C ◦ det(L ◦G))

where det is the determinization operation, ◦ is the composition op-
eration and the π operator is a procedure that removes auxiliary sym-
bols. In section 2.3 the cascade is extended by composing in the
acoustic models H .

The static search network approach allows for the construction
of very fast decoders. However, many modern speech recognition
tasks require extremely large vocabularies and language models
(LMs). Even though large memory machines and advances in com-
position [2] can make the static construction possible in most cases.
There is still the problem that the compiled search networks may
exceed the memory limitations of the deployment machines. More-
over, static composition of large class models is still infeasible and
many applications need to change or adapt the components on-
line. This cannot be done efficiently when using large pre-compiled
networks.

The dynamic composition approach builds the search space on-
line during decoding. The most common approach is to decouple the
language model from the other components. That is, to perform an
offline composition of the lexicon and context-dependency transduc-
ers such as C ◦ det(L) (and possible the acoustic models H). Then
in the recognition phase perform an additional on-demand composi-
tion of the (C ◦det(L)) machine with language model G during the
decoding.

However, attempting to compose C ◦det(L) with G will lead to
a substantially amount of dead-end paths. The problem is the deter-
minized CL will have many null output transitions that occur before
an output symbol. The composition algorithm must follow each of
these paths looking for a word symbol to match against the input
symbols of the current state in the LM. Every lexicon path that is
expanded and not matched will be costly in terms both of memory
and CPU time. To circumvent this problem there has been much
research in different constructions and specialized composition ap-
proaches [3, 4, 5, 6, 7, 8, 9, 10, 2, 11].

The goals of this work were to compare lookahead composi-
tion [2] with on-the-fly hypothesis rescoring [5] using a common
WFST decoder. In particular we wanted to determine the strengths
of each approach, gain more insight in the manner the algorithms
behave, and to investigate the scope for combination of the methods.
This is different to much of the previous work where comparison are
normally made between static WFST and traditional decoders.

Among the work focusing on decoder architectures comparisons
most recently, Rybach et al [12] compared a dynamic search decoder
with dynamic WFST decoder. In [13] a comparison was made be-
tween tree search decoder and a static WFST based decoder. The
authors of [14] implemented a very fast dynamic decoder and pro-
vided detailed comparisons with a state level WFST decoder. In [15]
there was a comparison of two tree search decoders and two differ-
ent WFST based decoders. The papers where dynamic WFST algo-
rithms have been proposed usually contain comparisons with a static
baseline [3, 4, 5, 6, 7, 8, 9, 10, 2, 11].

1.2. On-the-fly Composition Approaches

The starting points of WFSTs in speech recognition can be found in
the early publications from the researchers at AT&T[16, 17]. Some
of the these early publications briefly mentions on-the-fly composi-
tion of the language model and or context-dependency transducers,
but give very few details or experimental results[18, 19, 16].

The first published works with a focus on on-the-fly composition
were [3] and [20]. This was later followed by [21] which features
a similar method to [20]. Caseiro’s [3] approach was to specialize
the composition algorithm for the acyclic nature of the lexicon trans-
ducer. In [20] and [21] the common theme was to factor the language
model into two components and apply a standard composition algo-
rithm.
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1.3. On-the-fly Rescoring

The on-the-fly rescoring approach proposed by Hori et al [5, 6, 8]
factors the language model into two components G1 and G3−1 .
Here the decoder performs a standard beam search on CLG1 and
generates a recognition lattice (possibly virtually). In this method
though, instead of waiting for the recognition to complete the rescor-
ing is performed during the first-pass. As the lattice is constructed
a set of rescoring tokens or co-hypotheses are maintained that are
associated with a token in the active search graph of CLG1 and a
state in the second language model G3−1. When lattice arcs are
generated from the first transducer they are rescored using the full
LM and the updated scores are to readjust the token scores in the
first transducer. The advantages of this approach are no composition
dead-end paths are generated and the method has the potential to de-
code faster than a fully composed search network[8]. Later in [6]
an extended approach was described that allowed for the dynamic
cascading of multiple transducers.

The rescoring implementation we used in the experiments in this
paper is slightly different to the original scheme proposed in Hori[6].
Our implementation is somewhat similar to the scheme described in
[11]. In our rescoring tokens we keep track of both the accumulated
acoustic and total costs. By tracking the acoustic contribution this
removes the requirement to factor the LM and instead we can use
G3 directly for rescoring.

1.4. Lookahead Composition

Caseiro [3, 4, 7] described a composition algorithm tailored to the
structure of the lexicon transducer that avoids the generation of dead-
end states. The algorithm also applied dynamic weight pushing to
improve recognition speed and dynamic label pushing that helps re-
duce the size of the final search space.

Similar approaches were extended by others[22, 23, 9] to allow
the composition to operate on more general topologies of transduc-
ers. In [10] the author proposed the use of a composition filter that
interacts with a more general composition algorithm. The Looka-
head composition proposed by [2] uses a very flexible generalized
filter mechanism.

A further advantage of the generalized composition approach
is it allows for the C ◦ det(L) ◦ G to be constructed directly and
this greatly reduces the amount of memory required for constructing
static networks.

2. EXPERIMENTS

We performed experiments on the Corpus of Spontaneous Japanese
(CSJ) using the training and testing protocols described in [24]. The
test set consisted of a total of 116 minutes of speech which spanned
10 lectures. Each of the lectures was segmented to give a total of
2338 test utterances.

The training speech was converted to sequences of 39 dimen-
sional feature vectors with 10 ms frame rate and 25 ms window size.
Each featur e vector was composed of 12 MFCCs with deltas and
delta-deltas, augmented with log energy, log delta and log delta-delta
energy terms. The acoustic models were comprised of 8000 left-to-
right HMM tri-phone models each with three states. In total there
were 3000 tied states each with 32 Gaussian densities . The Kneser-
Ney smoothed trigram language model (G) was constructed using
the MITLM toolkit [25]. The final language model contained a 90k
word vocabulary and approximately 2M n-grams.
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Fig. 1. Comparison of different dynamic composition approaches on
the CSJ task

The experiments were conducted on an Intel Core i7 machine
with 12GB of memory. The operating system was Ubuntu 10.04
(64bit) and the decoder was compiled for 32bit using g++ 4.4.

We used our in-house decoder called SprinTra, the architecture
is very similar to the scheme described in [26]. We make use of the
OpenFst libary [27] for the WFST representations, IO, and funda-
mental algorithms.

In the following section we compare the following composi-
tion schemes: Statically composed cascade (Static), on-the-fly com-
posed using lookahead composition (OTFLA), on-the-fly rescored
unigram/trigram combination (OTFR 1.3) and on-the-fly rescored
bigram/trigram combination (OTFR 2.3).

2.1. Accuracy, Speed and Memory Performance

The results in Figure 1 show the performance of the difference ap-
proaches. The Real Time Factor (RTF) is computed by dividing the
wall time by audio length. The results show as expected the static
search network performing best. From the dynamic approaches we
notice nearly identical performance when comparing the OTFLA ap-
proach and OTRF bigram approach. For comparison, a one-pass bi-
gram language model gave a lower absolute accuracy by around 2%
and worse RTF characteristics.

We found the performance for the OTRF with unigram looka-
head did not perform as well as expected. The best error rate was
0.6 worse than the asymptotic best error rates of the other systems.
This could be slightly improved by increasing the number of co-
hypotheses at a greater RTF cost. To verify the implementation we
also tried a standard two-pass rescoring approach and observed the
same asymptotic accuracy. These results may be due to differences
in our models, decoder or construction process. A similar drop in
accuracy was reported in [20] when using a standard composition al-
gorithm with a unigram/trigram factorization. The transducers were
optimized by determinization and pushing in (or equivalent to) the
log semiring for all the cascades. We found minimization or other
optimizations did not make any significant changes to the operat-
ing curves. We did observe the unigram factorization performance
converged faster when we estimated a separate lower order n-gram
rather than re-using the unigram probabilities from a trigram model.
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In the speed experiments the default OpenFst garbage collec-
tion was disabled and the decoder and ComposeFst along with
its composition cache were completely destroyed and re-instantiated
after processing 32 utterance.

The memory measurements were performed under the follow-
ing conditions. All of the transducers where converted to the Open-
Fst ConstFst class, this holds all the arcs for all the states in a
single contiguous array. The ConstFst is more memory efficient
then the default OpenFst VectorFst type. The actual memory us-
age was determined by hooking into the global memory allocation
functions and tracking the number of bytes requested by the decoder.
The memory usage was recorded before resetting the caches and this
value was averaged over the entire testset.

The upper part of Figure 1 shows the memory consumption at
the different RTFs. The reason the rescored implementations achieve
low memory usage is because we found that the algorithm could
perform well without any caching. The rescoring transducer was
simply input sorted and a binary search was used to find matching
arcs as needed.

The lookahead composition ComposeFst uses an under-
lying cache that is similar to the OpenFst VectorFst type
which increases the memory consumption (To fully expand the
ComposeFst alone required around 1G).

For a given beam the static and OTFLA configurations alwas
achieved indentical accuray. The OTFR2.3 was nearly identical
to the static network, and larger difference were observed for the
OTFR1.3 configuration.

2.2. Search Analysis

Figure 2 shows the average number of Gaussian mixtures and ac-
tive arcs per frame at the various beam widths. We focused on these
characteristics as there are often the most computationally expensive
parts of the decoding process. The results show in both of the OTFR
cases fewer active arcs are required and this verifies the claims in [8].
It may be possible to obtain further speed-ups with more aggres-
sive band pruning. Better caching strategies may give performance
curves more similar to those described in [8] at the cost of increased
memory usage.

The results show for a given beam the OTFR setups require more
Gaussian mixture evaluations per frame. One reason is because the
pruning of active arcs with the full LM score can only be performed
when a token leaves an arc. In the case of the static network or looka-
head composition the full LM score can be applied immediately once
an arc is activated. In the OTRF bigram factorization the increase in
acoustic scoring costs and the reduction in active arcs combined with
a increase in accuracy for a given beam balances out to give nearly
identical speed characteristics to the lookahead composition system.

2.3. State Level Decoding

In the next set of experiments we explore how the dynamic ap-
proaches operate when adding the acoustic model(H) transducer into
the static search network. Figure 3 shows that operating at the state
level gives very similar static vs dynamic performance characteris-
tics. In the state level setup approximately 50% more requests are
made to the main search WFST or to the lattice construction. We ex-
pected the increase in these calls to causes larger slow downs in the
dynamic approaches. However, we observed the delta between the
static and dynamic approaches to remained largely the same except
for the wider beam settings.
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Fig. 2. State computations and number of active arcs for a given
beam width when decoding at the arc level.

When comparing equivalent state and arc level systems, the state
level requires around 20% less Gaussians to be computed per frame.
There is a 30% increase in the average number of active arcs per
frame for the static and OTFLA approaches and a 20% increase for
the OTFR approaches. Overall the re-distribution in computation
cancels out to very similar WER vs RTF when comparing an arc or
state level network. This result shows that either of the composition
approaches are suitable for state level decoders. However, the larger
percentage of time spent by the Gaussian computations in the arc
level decoder suggests that the arc level decoding can benefit more
from Gaussian speed-up schemes and overall the arc level could be
much more memory efficient.

3. CONCLUSIONS

In this paper we have presented an experimental comparison of
lookahead composition and on-the-fly hypothesis rescoring.

The experiments have shown both algorithms display different
run-time characteristics. On-the-fly rescoring explores a smaller
search space in the first transducers but requires more Gaussian state
evaluations. Lookahead composition is the opposite, requiring a
larger search space but fewer unique Gaussian state evaluations.

We found in our experiments that on-the-fly rescoring could
achieve good performance when there was a bigram model in the
static search network component. Overall we found lookahead com-
position and on-the-fly rescoring (bigram) performed approximately
the same in terms of speed and accuracy. We have shown both algo-
rithms perform well when operating at either the arc or state level. In
both of these cases the slow down in comparison to a static baseline
is similar for both methods.

Areas for future work are to investigate how the algorithms per-
form on different tasks and other models. In particular more com-
parison should be performed with larger language models to clearly
show the benefits of using on-the-fly techniques to reduce memory
consumption during decoding. In this task the language model was
too small to fully appreciate the memory saving gains from using de-
layed composition. It would be especially interesting to see if the un-
igram rescored system can be made to perform as fast as in [5, 6, 8]
as this approach required the least memory of all the systems.
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Fig. 3. Comparison of different dynamic composition approaches
when operating on the state level.
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