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ABSTRACT

This paper proposes a new feature representation, Bag Of Arcs
(BOA) for speech segments. A speech segment in BOA is simply
represented as a set of counts for unique arcs in a finite state ma-
chine. Similar to the Bag Of Words model (BOW), BOA disregards
the order of arcs, and thus, efficiently models speech segments. A
strong motivation to use BOA is provided by a fact that the BOA
representation is tightly connected to the output of a Weighted Finite
State Transducer (WFST) based ASR decoder. Thus, BOA directly
represents elements in the search network of a WFST-based ASR de-
coder, and can include information about context-dependent HMM
topologies, lexicons, and back-off smoothed n-gram networks. In
addition, the counts of BOA are accumulated by using the WFST de-
coder output directly, and we do not require an additional overhead
and a change of decoding algorithms to extract the features. Con-
sequently, we can combine the ASR decoder and post-processing
without a process to extract word features from the decoder outputs
or re-compiling WFST networks. We show the effectiveness of
the proposed approach for some ASR post-processing applications
in utterance classification experiments, and in speaker adaptation
experiments by achieving absolute 1% improvement in WER from
baseline results. We also show examples of latent semantic analysis
for BOA by using latent Dirichlet allocation.

Index Terms— Speech segment feature, finite state machine,
Bag Of Arcs (BOA), speaker recognition, utterance classification

1. INTRODUCTION

The number of speech archives has grown hugely as storage capac-
ity has increased and cloud services have been widespread. This
has led to the need for an efficient technique for modeling speech
segments for classification and utilization of speech processing in-
cluding Automatic Speech Recognition (ASR). This paper proposes
a new representation of a speech feature, which we call Bag Of Arcs
(BOA) for speech segments. A speech segment in BOA is simply
represented as a set of counts for unique arcs in a finite state ma-
chine used in an ASR decoder [1, 2].

The proposed BOA model is a generalized extension of the Bag
Of Words (BOW) model, which is widely employed for document
classification in the field of natural language processing [3–5]. The
BOW model is used as a generative model of a document in a naive
Bayes classifier and latent topic model. The BOW representation is
also used as a feature in the Support Vector Machine (SVM). Similar
to BOW, BOA disregards the order of arcs, and thus, efficiently mod-
els speech segments. A strong motivation to use BOA is provided by
a fact that the BOA representation is tightly connected to the out-
put of a Weighted Finite State Transducer (WFST) based ASR de-
coder. Namely, BOA directly represents elements in the search net-
work of a WFST-based ASR decoder, and can include information
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about context-dependent HMM topologies, lexicons, and back-off
smoothed n-gram networks, whereas BOW only possesses word uni-
gram information. In addition, the counts of BOA are accumulated
by using the WFST decoder output directly, and we do not require an
additional overhead and a change of decoding algorithms to extract
the features. This tight connection enables us to simply combine the
ASR decoder and post-processing of the ASR outputs via the BOA
representation. Suppose, for example, a type of post-processing of
ASR based on the conventional BOW representation, we require a
step of extracting word features from the decoder outputs. In addi-
tion, when we reflect the post-processing results to the ASR decoder
(e.g., language model adaptation), we have to re-compile WFST net-
works using the obtained BOW model, which is time-consuming in
the large vocabulary speech recognition setup. These overhead pro-
cesses are not required for the proposed BOA representation. More-
over, the proposed approach has the potential to be used in various
spoken language applications (e.g., spoken document retrieval), and
other finite state machine based processings than ASR (e.g., statisti-
cal machine translation, and text summarization).

We show the effectiveness of the proposed approach for some
ASR post-processing applications in utterance classification experi-
ments and speech recognition experiments using speaker adaptation.
We also show examples of latent semantic analysis for BOA by using
Latent Dirichlet Allocation (LDA) [5], which provided topic word
categorization different from the BOW case, as a result of reflect-
ing the information about context-dependent HMM topologies and
lexicons.

2. FORMULATION

This section deals with speech segments in a probabilistic manner to
make it possible to use machine learning techniques1. In this paper,
we assume a speech segment to be an utterance or segment that has
some linguistic meaning.

2.1. Generative model of speech segments

Let X(u) = {xt ∈ R
D|t = 1, · · · , T (u)} be a D dimensional

observation vector (e.g. a Mel-Frequency Cepstral Coefficient
(MFCC)) sequence of speech segment u. T (u) denotes the number
of frames in speech segment u. Now, we deal with the problem
of classifying speech segment u to category Cu, and consider the
posterior distribution p(Cu|X(u)) by reference to the generative
model of a document in the naive Bayes classifier [3].

Since we cannot generally obtain an N -length word sequence
W = {wn ∈ N|n = 1, · · · , N} given speech inputs unlike BOW,
we use the probabilistic sum rule to introduce the word sequence W
as follows:

p(Cu|X(u)) ≈
∑
W

p(Cu|W)p(W|X(u)), (1)

1We can also use non-probabilistic features based on our proposed BOA
representation.
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Here, we use the Bayes theorem and conditional independence as-
sumption, and approximate that p(Cu|W) ≈ p(Cu|W,X(u)).
Eq. (1) is expressed by the posterior distribution given a word
sequence used in the BOW formulation [3] and the posterior
distribution of a word sequence, which can be obtained with an
ASR decoder. For simplicity, we use the Viterbi approximation
(Ŵ = argmaxW p(W|X(u)) and p(Ŵ|X(u)) = δWŴ)2 and
obtain the following equation:

p(Cu|X(u)) ≈ p(Cu|Ŵ) =

N̂(u)∏
n=1

p(ŵn|Cu)p(Cu). (2)

From the equation, the posterior distribution of a speech segment can
be approximately represented by the word distribution of the 1-best
recognition result for X(u) by using an ASR decoder.

2.2. Finite state machine based representation

A probabilistic speech recognition approach obtains an appropriate
word sequence from the conditional distribution p(W|X(u)), i.e.,
argmaxW p(W|X(u)). However, it is difficult to deal directly with
p(W|X(u)), and the joint distribution p(W,X(u)) is generally
used, which is obtained by composing acoustic, lexicon, and lan-
guage model networks.

WFST-based decoders deal with this joint distribution by con-
sidering the composed network statically in a decoding graph. For
example, for general speech recognition, we prepare a transducer
network R composed of an HMM network, a phoneme-context net-
work, a lexicon network, and a grammar network. Then, WFST
decoders focus on a path in WFST R, which corresponds to arc se-
quence (a = {a1, · · · , am, · · · aM} ∈ R), instead of HMM state
and word sequences. Arc am has an input symbol i[am] consisting
of an HMM state id, an output symbol o[am] consisting of a word
id, and weight h[am]3. Therefore, arc sequence a represents a trans-
ducer from HMM state sequence s = {i[a1], · · · , i[aM ]} to word
sequence W = {o[a1], · · · , o[aM ]}. Then, the decoding process
becomes a search problem concerned with finding an appropriate
arc sequence ā among all possible a in WFST R:

ā = argmax
a∈R

w(X(u),a). (3)

w(X(u),a) is the unnormalized likelihood score given observation
vectors X(u) and hypothesized arc sequence a. If we normalize
w(X(u),a) for all possible arc sequences in recognition networkR,
this score becomes a conditional distribution probability. The corre-
sponding word sequence is obtained by W̄ = {o[ā1], · · · , o[āM ]}.

The idea of the proposed approach replaces the word-based pos-
terior distribution in Eq. (2) with the arc based distribution as fol-
lows:

p(Cu|X(u)) ≈ p(Cu|ā) ≈
M̄(u)∏
m=1

p(ām|Cu)p(Cu). (4)

M̄(u) is the number of arcs for sequence ā. This representation
directly reflects the search network of a WFST-based ASR decoder.

2We can also use the lattice or n-best based approaches for the 1-best
Viterbi approximation. The word lattice based formulation within a finite
state machine framework is discussed in [6].

3If we use factorization, input and output symbols may include sequences
of HMM state and word ids, respectively, and an epsilon transition (φ) is also
allowed in input and output symbols.

2.3. Multinomial distribution for arc output distribution

Arc uni-gram model

By setting a multinomial distribution for the output distribution, we
can obtain the following distribution:

p(Cu|X(u)) ≈ M(ā|{θl}Ll=1), (5)

where

M(ā|{θl}Ll=1) ∝
M̄(u)∏
m=1

θs[ām] =

L∏
l=1

θ
n̄l(u)
l . (6)

l means a unique index of arcs in a finite state machine, and L is
the number of unique arcs. s[am] is an arc identifier function to
output the corresponding arc index of am. nl(u) denotes a count of
arc l that appeared in speech segment u and that is obtained from
the decoded result. From the maximum likelihood estimation and
by considering a discounting method, we can derive the following
multinomial distribution parameter:

θl =

∑
u nl(u) + δ∑

u

∑L
l=1 nl(u) + δL

. (7)

In this paper, we use the additive smoothing method with discount-
ing parameter δ. Thus, we can derive the generative model of speech
segments by using the arc representation based on the WFST decod-
ing framework, which is used for WFST adaptation (Section 3.2) and
latent semantic analysis (Section 3.3).

Latent topic model

This paper considers word clustering based on a latent topic model
that uses arc and segment variables instead of word and document
variables in the original latent topic model. The generative model
represents the occurrence probability of arc sequence a given seg-
ment u without using classification category Cu. This is decom-
posed into topic and arc probabilities as follows:

M(u)∏
m=1

p(am|u) =
M(u)∏
m=1

K∑
k=1

p(am|k, u)︸ ︷︷ ︸
Arc probability

p(k|u)︸ ︷︷ ︸
Topic probability

=

M(u)∏
m=1

K∑
k=1

θuks[am]φuk,

(8)

where K is the number of latent topics. We also use the conditional
independence assumption for a. In LDA, we set a Dirichlet distri-
bution for the prior distribution of the topic probability φuk, i.e.,
p(φuk) ∝

∏K
k=1 φ

γk−1
uk with hyper-parameter γk.

2.4. Discriminative approach

Similar to natural language processing, we can use the BOA repre-
sentation as a feature of discriminative models (e.g., SVM and aver-
aged perceptron [7]). In the discriminative approaches, we can also
introduce other features (e.g., acoustic and language scores, Gaus-
sian statistics, duration) in addition to unique arc counts. These are
used in the WFST based discriminative model approaches [8, 9].

3. EXPERIMENTS

We show the effectiveness of the proposed approach for lecture
classification experiments and speech recognition experiments using
speaker adaptation. In the lecture classification experiments, we
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Table 1. Lecture classification error rates (%) of BOA (proposal)
and BOW.

BOW BOA (proposal)
Multi-class SVM (Dev.) 52.36 % 51.36 %
Multi-class SVM (Eval.) 52.48 % 51.42 %

Averaged perceptron (Dev.) 59.26 % 58.36 %
Averaged perceptron (Eval.) 59.20 % 58.46 %

used an MIT OpenCourseWare (OCW) task [10]. In speech recog-
nition experiments, we used MIT-OCW and Corpus of Spontaneous
Japanese (CSJ) tasks [11]. We also show examples of latent se-
mantic analysis for BOA with LDA by using MIT-OCW. In all the
experiments, we used an utterance unit obtained by voice activity
detection as a speech segment.

3.1. Lecture classification

We demonstrated lecture classification task experiments by using the
proposed BOA and conventional BOW features, which classified
each utterance according to its corresponding lecture. MIT-OCW
contains a total of 105 lectures and 57,376 speech utterances. We
used 47,376 utterances as a training set, 5,000 utterances as a devel-
opment set, and the rest 5,000 utterances as an evaluation set. The
BOW and BOA were obtained from references (not ASR results)
to simplify the experimental discussion. The BOA features were
obtained by composing the finite state acceptors, which accept the
reference word sequences, and the WFST used for the ASR decod-
ing. In these experiments, we used two types of classifiers, the multi
class SVM with a linear kernel and the averaged perceptron. The
development set was used to tune the trade-off parameter between
the training error and the margin in the multi class SVM, and the
number of iterations in the averaged perceptron.

Table 1 shows the lecture classification error rates. This clas-
sification problem was a very difficult task because some of the
utterances are composed only of fillers, simple words (e.g., “yes”,
“this one”, “you know”), which do not have the information needed
for this lecture classification. Even in this situation, both classi-
fiers archived 50 % error rate ranges. The table shows that BOA
was superior to BOW by around 1 % in both classifiers’ results.
The difference between BOW and BOA is that BOA considers the
context-dependent HMM state and lexical information in addition to
the word information used in BOW. Therefore, we can conclude that
the superiority of BOA derives from its sparser representation based
on the additional information, which can obtain the classification
boundary more separably4. In addition, Figure 1 shows the develop-
ment set results of BOW and BOA for every iteration by using the
averaged perceptron. The result shows that BOA steadily improved
the performance from BOW in every iteration, and this result also
supports the superiority of BOA.

3.2. WFST adaptation

We demonstrated the unsupervised weight vector adaptation of WF-
STs in speech recognition based on the BOA representation. The
unsupervised weight adaptation of a WFST is realized by employing
the following steps:

1) Arc sequences are obtained by using a WFST decoder.

2) The uni-gram probabilities of the multinomial parameters are
computed based on Eq. (7).

4However, the baseline performance of this topic classification task is
rather low, and we need more experiments to validate our conclusion.
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Fig. 1. Lecture classification error rate for each iteration by using
averaged perceptron.

Table 2. Experimental conditions for an MIT-OCW task.
Sampling rate/quantization 16 kHz / 16 bit
Observation vector 12 order MFCC with energy
(39 dimensions) +Δ+ΔΔ (CMS)
Window Hamming
Frame size/shift 25/10 ms

Num. of phoneme categories 52
Num. of clustered HMM states 2,565 (3 left-to-right HMM states)
Num. of mixture components / state 32
Language model 3-gram (KN discounting)
Vocabulary size 44K

3) The obtained parameters are linearly interpolated with the
original weights in the WFST.

4) Recognition results are obtained by using a WFST decoder
with the adapted WFST.

Unlike the conventional language model adaptation within a WFST
framework, we do not need to use a uni-gram rescaling technique
[12] or to construct a new language model to obtain the new WFST
[13].

We used an MIT-OCW task [10] and a CSJ task [11]. The exper-
imental conditions for the MIT-OCW task are summarized in Table
2. The initial acoustic model was constructed by using variational
Bayesian triphone clustering [14] and differenced Maximum Mutual
Information (dMMI) training [15]. The evaluation set consisted of 8
lectures (6,989 utterances, 72,159 words, and 7.8 hours). The exper-
imental conditions for the CSJ task are summarized in Table 3. The
initial acoustic and language models were trained by discriminative
approaches [15,16]. We used CSJ testset 2 as a development set (10
lectures, 794 utterances, 26,798 words, and 2.2 hours) and CSJ test-
set 1 as an evaluation set (10 lectures, 977 utterances, 26,329 words,
and 2.0 hours). In the CSJ experiment, the utterances were automat-
ically segmented from the lectures using non-linear Kalman filter-
ing based VAD [17]. Both the experiments used a one-pass WFST-
based decoder that employs a pair of WFSTs for composition during
decoding by a fast on-the-fly composition technique [2]. The dis-
counting parameter, δ in Eq. (7), is set at 0.01 in all the adaptation
experiments. The scaling parameters in the linear interpolation in
Step 3) were empirically set at 0.02 in the MIT task, and were set at
0.03 in the CSJ task determined by the development set of the CSJ
task.

Table 4 shows the Word Error Rates (WERs) obtained by the
proposed BOA-based adaptation. It also includes the WERs by
the conventional BOW-based adaptation, and by combination of
the BOW- and BOA-based adaptations in the CSJ task. As we see
from the table, the WERs after the BOA were comparable to those
after the BOW. Given the fact that the BOA did not require re-
compilation of WFSTs (it took several seconds and required several
hundred megabytes of memory), we can take the results as mean-
ing that the BOA produced a comparable improvement at much
less computational cost than the BOW. In addition, the WERs were
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Table 3. Experimental conditions for a CSJ task.
Sampling rate/quantization 16 kHz / 16 bit
Observation vector 12 order MFCC with energy
(39 dimensions) +Δ+ΔΔ (CMS)
Window Hamming
Frame size/shift 25/10 ms

Num. of phoneme categories 43
Num. of clustered HMM states 5,000 (3 left-to-right HMM states)
Num. of mixture components / state 32
Language model 3-gram (Good Turing)
Vocabulary size 100K

Table 4. Word error rates (%) for WFST adaptation experiments.
Baseline BOW BOA BOA+BOW

CSJ-Dev. 17.6 % 16.5 % 16.5 % 16.2 %
CSJ-Eval. 20.9 % 19.9 % 19.8 % 19.6 %
MIT-OCW 27.9 % - 26.9 % -

further reduced by the combinatorial approach from those by the
separate use of either the BOA or BOW, which suggests the BOA-
and BOW-based adaptation could work complementarily. From
these results, we can conclude that the proposed BOA representa-
tion is advantageous for weight adaptation in WFST frameworks.
3.3. Latent semantic analysis
Finally, we demonstrated a latent semantic analysis in BOA and
BOW representations as a preliminary experiment. We used LDA
based on the stochastic EM algorithm [13]. The obtained word clus-
ters by BOW and BOA are shown in Tables 5 and 6, respectively.
Table 5 shows that topic-wise clustering was achieved by using the
BOW model. In contrast, Table 6 shows that the clustering was
achieved for the acoustic or phonetic similarity among words by
using the BOA model. This is because BOA involves information
from HMM state and pronunciation lexicon. Thus, BOA is different
from BOW in that it can reflect the hierarchical structure in speech
representation for ASR. Future work will apply BOA to topic based
language model adaptation [12,13] to show the effectiveness of BOA
in a latent semantic analysis in terms of quantitative evaluation.

4. SUMMARY

This paper proposed the Bag Of Arc (BOA) model as a new repre-
sentation of speech segments based on a finite state machine frame-
work. We provided the formulation of three typical applications
of BOA (document classification, adaptation of generative models
and latent semantic analysis) used in the conventional Bag Of Word
(BOW) model. Experiments showed the superiority of BOA to BOW
in these applications. The proposed approach has the potential to be
used in various spoken language applications (e.g., spoken document
retrieval), and future work will focus on these applications.
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Table 5. Top 10 high probability nouns in word probabilities in the
Bag of Word (BOW) representation.

(∼Classical mechanics) (∼Astronomy) (∼(Time) unit)
m light percent

energy degrees time
force angle dollars
mass frequency times
point energy minutes

velocity direction day
direction waves bit

v sun year
times star hour
speed speed half

Table 6. Top 10 high probability words in arc probabilities in the
Bag of Arc (BOA) representation. The words were extracted from
the output symbols of the WFST arcs.

important doing under
forty engineering undergraduate

improve selling underlying
fourteen jack underneath

importance engineer unlike
impossible japanese undergraduates
importantly monitoring underground
improvement jackson unquote

ford arguing undoubtedly
improving referring unpolarized
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