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ABSTRACT

In this paper we present our system for speaker diarization of broad-
cast news based on recent advances in the speaker recognition field.
In the system, speaker segments determined by the speaker change-
point detector are represented by i-vectors and similarity of seg-
ments’ speakers evaluated using cosine distance scoring. Linear dis-
criminant analysis is employed to cope with intra-speaker variabil-
ity. The experiments were carried out using the COST278 multi-
lingual broadcast news database. We demonstrate improvement of
the performance over the baseline system based on the Bayesian In-
formation Criterion (BIC) and highlight significant impact of cep-
stral mean normalization. Finally, two-stage clustering employing
BIC-based clustering to pre-cluster segments in the first stage is ex-
amined and showed to yield further performance improvement. The
best performing configuration of our system achieved 52.4 % rela-
tive improvement of the speaker error rate over the baseline.

Index Terms— Speaker diarization, broadcast news, clustering,
i-vectors

1. INTRODUCTION

An inherent part of a speaker diarization system is a clustering mod-
ule. This paper presents our results from a study that investigated
speaker clustering method applicable for broadcast stream audio
processing. The method must be robust against large variety of
recording conditions (often frequently changing) and transmission
channels. The approach was initially proposed for the speaker recog-
nition task [1] and proved to outperform the other state-of-the-art
approaches in various NIST Speaker Recognition Evaluation (SRE)
2008 conditions, including the 10sec-10sec condition operating
with short segments. The approach employs a simple factor anal-
ysis model to extract fixed-and low-dimensional representation of
audio segments using so called i-vectors. Linear discriminant anal-
ysis is then applied in the i-vectors space to filter out the nuisance
intra-speaker variability. Finally, similarity of segments’ speakers
is evaluated using cosine distance of the vectors. Utilization of
approaches based on factor analysis in the task of speaker diari-
azation was presented in [2] and application of clustering based on
representation of speech segments by i-vectors was already reported
in [3, 4]. Authors of [4] deal with diarization of summed (two-wire)
telephone conversations and propose their solution with an assump-
tion that recordings contain just two speakers. However, no such
assumption is legitimate in broadcast domain which is of our inter-
est and is handled in [3]. While author in [3] use average i-vector
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as estimated based on all i-vectors corresponding to the segments
assigned to a cluster for its representation, we derive the i-vector
representing the cluster as Maximum A Posterior (MAP) point es-
timate of factors in the total variability space based on summed
sufficient statistics gather across all segments assigned to the cluster.
Another difference compared to [3] consists in the way the initial
segmentation is performed. Further, we present two stage clustering
combining standard BIC-based approach with the approach based
on i-vectors and highlight the impact of cepstral mean normalization
in both stages of the clustering process.

Although we address particularly the clustering problem in this
paper, we consider the assessment within the speaker diarization
framework very useful as it reflects the ability to cope with possi-
bly over-segmented speech or inexactly found segment boundaries
leading to lower speaker purity of segments.

2. SPEAKER DIARIZATION SYSTEM

Our speaker diarization system consists of three basic modules.
First, after feature vectors are extracted, speech activity detection
(SAD) is applied. Then, speaker change points are detected by a
speaker segmentation module. Finally, segments of the same speak-
ers are clustered and speaker diarization is provided. All modules
use standard Mel-frequency cepstral coefficient (MFCC) features.

The clustering module uses bottom-up clustering which is pre-
dominant approach for speaker clustering. First, a similarity measure
between all pairs of speech segments is computed. Next, until the
stopping criterion is met, the most similar pair of speech segments
(clusters) is iteratively merged into a new cluster and the similarity
measure between the new cluster and all remaining speech segments
(clusters) is recomputed.

3. CLUSTERING METHODS

3.1. BIC-based clustering

The baseline system uses the Bayesian Information Criterion (BIC)
as the similarity measure [5]. The BIC-based measure compares the
BIC statistics of clusters g1 and g2 with the BIC statistic of a cluster
g which is formed by merging of the cluster g1 and the cluster g2.
We apply local BIC measure which is defined as

ΔBIC(g1, g2) =(N1 +N2)log |Σ| −N1log |Σ1|

−N2log |Σ2| − αP
(1)

where N is the number of frames, Σ is the full covariance matrix of
the frames, α is a penalty weight and P is the penalty:

P =
1

2

(
d+

1

2
d(d+ 1)

)
log(N1 +N2) (2)
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Fig. 1. The i-vector extraction process.

where d is the dimension of feature vectors.
In the clustering process, two clusters with the lowest ΔBIC

value are merged together. If a minimal distance between any pair
of clusters is higher than a certain threshold λ (typically zero), the
stopping criterion is met.

The main advantage of the method is the small number of pa-
rameters that need to be estimated. No background models need to
be estimated and the penalty weight α and the threshold λ represent
the only parameters.

3.2. I-vectors extraction

We employ a simple factor analysis model to extract a fixed-
dimensional representation of a segment of variable length as pro-
posed by [1]. Let’s assume a Gaussian Mixture Model (GMM)
trained on data pooled from many speakers. This model is typically
referred to as the Universal Background Model (UBM). The term
supervector is used to refer to a high-dimensional vector obtained
by concatenation of mean vectors of components of a GMM. Let
s be a supervector representing a speech segment. In the i-vector
concept, speaker-and segment-specific supervector for j’th segment
of a speaker s is defined using a generative model as

ss,j = m+ Txs,j (3)

where m is a speaker-and segment-independent supervector (ob-
tained from the UBM), the T is a rectangular matrix of low rank
and the xs,j is a random vector having standard normal distribution
N [0, I]. The matrix T defines a total variability space and com-
ponents of the vector x are corresponding factors. Following the
terminology of [1] we refer to the vector x as the i-vector.

A projection from a sequence of feature vectors representing a
speech segment to the i-vector space is provided by computation of
a Maximum A Posterior (MAP) point estimate of the xs,j based
on zero-and first-order sufficient statistics gathered employing the
UBM [6]. The process of the i-vector extraction is illustrated in
Fig. 1. Considering the i-vector as a feature vector representing a
speech segment, the factor analysis model (3) acts as part of the fea-
ture extraction process. Having a fixed-dimensional representation
we can apply cosine distance scoring (CDS).

3.3. Cosine distance scoring

The cosine distance score CDS for segments (clusters) represented
by i-vectors x1 and x2 is:

CDS =
x

′

1x2

‖x1‖ ‖x2‖
. (4)

In the clustering process, the two clusters with the highest CDS

value are merged together. If a maximum CDS value for any pair
of clusters is lower than a certain threshold λ, estimated on the de-
velopment data, the stopping criterion is met.

Now let X(g) = {x(g)

1...J(g)} be a set of J(g) i-vectors represent-
ing segments assigned to a cluster g. Eq. 4 can be applied only for
a pair of i-vectors, each representing one cluster in the trial. To ob-
tain representation of a cluster by a single i-vector, sufficient statis-
tics gathered employing the UBM for each segment assigned to the
cluster are summed together and a MAP point estimate of the total
factors extracted based on these summed statistics to form a single
i-vector.

The LDA is employed to cope with the nuisance intra-speaker
variability. The LDA defines an orthogonal projection matrix that
maximizes between-classes variability and minimizes intra-classes
variability. The projection matrix is estimated using a background
data set. In our case, each class is formed by all segments of a single
speaker in an audio stream.

3.4. Two-stage clustering

Two-stage clustering scenario was successfully applied in speaker
diarization systems dealing with meeting, lecture or broadcast
data [7]. Our motivation stems from a hypothesis that the MAP point
estimate of the total factors (i-vectors) for segments of short duration
cannot be estimated reliably which may harm the clustering process
particularly at early phases. To cope with the problem we employ
two-stage clustering scenario. We have already experienced good
results obtained with the two-stage approach in the system employ-
ing Probabilistic Linear Discriminant Analysis (PLDA) modeling of
i-vectors [8]. In the first stage, we use BIC-based clustering with
zero value of the stopping threshold λ and a value of the BIC penalty
weight α set so as to under-cluster the segments and thus reduce the
number of very short segments (shorter than 0.5 s). In the next stage,
the clustering approach employing i-vectors is applied.

4. EXPERIMENTS AND RESULTS

4.1. Datasets

Experiments were carried out using the COST278 multilingual pan-
European broadcast news database [9]. The database comprises
broadcast news recordings in 9 languages. Authors of the database
divided the data for each language into a training set (containing
about two hours) and a test set (containing about one hour).

We split the data into three datasets. The first set contained all
COST278 Croatian, Czech, Hungarian, Portuguese and Slovak train-
ing data giving in total 11.5 hours of audio. This set was used for
training of the UBM, estimation of the total variability space and
LDA projection matrix. The second set, consisting of 13 shows of
various lengths (in the range from 8.5 to 53.8 minutes) drawn also
from the COST278 training data and giving in total 5.89 hours, was
used as the development set for tuning of system parameters. Partic-
ularly for estimation of segmentation and clustering stopping thresh-
olds. Finally, the third set was used as the test set in our experiments.
The set consisted of 15 shows of various lengths (in the range from
4.1 to 53.2 minutes) drawn from the COST278 test data and giving in
total 6.34 hours. The development and test data comprised of 5 lan-
guages: Belgian Dutch, Czech, Hungarian, Slovak and Slovenian.
The streams in COST278 corpus contain also commercials which
are not annotated. The commercials were thus removed from the
streams used in development and test sets.
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4.2. Training data utilization

The UBM with 1024 components was trained using the data from
1007 speakers (2530 segments, 11.5 hours). The total variability
space was estimated using a subset of the UBM training data result-
ing from the condition of minimal length of a segment of 3 seconds
and using at most eight segments per speaker. This resulted in 2050
segments (10.2 hours) from 909 speakers. The LDA projection ma-
trix was estimated using the data from speakers for which at least
three segments of minimal length of 3 seconds are available, in to-
tal 1528 segments (7.5 hours) from 280 speakers were used. The
average length of segments used in training is 17.8 s.

4.3. Evaluation metrics

Performance of diarization systems is usually evaluated by the Di-
arization Error Rate (DER) as the primary metric [10]. The DER
can be decomposed as DER = SPKE+FA+MISS, where the
SPKE represents the speaker error rate, the FA is the speech false
alarm error rate and the MISS is the missed speech error rate. The
SPKE reflects the amount of speech data that is attributed to a wrong
speaker given the optimum speaker mapping between a system out-
put and a reference diarization. Because all our evaluated systems
share the same SAD and speaker segmentation modules, we use the
SPKE as the primary metric. Likewise in [10], a forgiveness collar
of 0.25 s (both + and -) was not scored around each boundary.

4.4. Features extraction

All components of the system use classic Mel-frequency cepstral
coefficient (MFCC) features. We used 25 ms window and 10 ms
window shift. The segmentation and clustering modules use feature
vectors formed from 30 and 12 static MFCCs respectively. Cepstral
mean normalization (CMN) was not employed within the segmenta-
tion phase and application of CMN for clustering will be discussed
in next sections. In case CMN was employed, it was applied for a
center frame within a sliding window of length of 400 frames.

4.5. Baseline system results

The SAD module achieved FA of 0.8 % and MISS of 3.2 % on the
test set. We found that higher value of the MISS is caused by in-
accuracy of reference annotations. In fact, we have observed that
our speech activity detection was able to detect the boundaries of
speech segments precisely. The average length of speech segments
after segmentation was 3.6 s.

First, performance for different values of the BIC penalty weight
α was evaluated. We found that systems using a non-zero value of
the stopping threshold λ estimated on the development data yielded
better performance than the systems operating with zero value of the
threshold, see Fig. 2. The best performance on the development set
was obtained for the system using penalty weight of 4.0. On the test
set, the system achieved SPKE of 24.8 % which corresponds to the
DER of 28.8 %. These results are considered as baseline. Further,
we found the application of CMN to cause significant performance
degradation, particularly for higher values of the BIC penalty weight.
Fig. 3 illustrates the effect of CMN application for the systems oper-
ating with non-zero stopping threshold values.

4.6. Cosine distance scoring system

Various configurations of the system employing cosine distance
scoring, differing in the number of Gaussians in the UBM, dimen-
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Fig. 2. Speaker error rate evaluated on (a) the development set and
(b) the test set for BIC-based clustering with zero (dashed line) and
estimated (solid line) stopping threshold.
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Fig. 3. Results for BIC-based clustering with (dashed line) and with-
out (solid line) application of CMN.

sions of the total variability space and LDA dimension reductions,
were examined. The best results were obtained for setups using the
UBM with 256 Gaussians to extract the sufficient statistics. Fig. 4(a)
shows the effect of different LDA dimension reductions for systems
operating with total variability spaces of dimensions of 300 and
400. The zero LDA dimension stands for no application of LDA
in Fig. 4. Fig. 4(b) shows the effect of CMN for the system using
400-dimensional i-vectors. We remark that application of CMN
requires utilization of the UBM, the total variability space and the
LDA projection trained using the mean normalized data.

Systems based on CDS provide performance similar to the base-
line system when LDA is not applied. Compared to the baseline,
the SPKE was slightly reduced from 24.8 % to 24.1 % (relatively
by 2.8 %) by the system using 300-dimensional i-vectors. When the
nuisance variability is projected out by virtue of LDA, the perfor-
mance is significantly improved. The best SPKE of 16.9 % (31.9 %
relative improvement) was achieved by system employing 400-
dimensional i-vectors and the LDA dimensional reduction to 200.
Concerning the effect of CMN, no significant impact was observed
compared to the severe impact in the case of the baseline BIC-based
system. For most of evaluated setups (including those not enclosed
in Fig. 4(b)), application of CMN slightly improves performance.

4.7. Two-stage clustering results

Significant impact of the BIC penalty weight, applied in the first
BIC-based pass of the two-stage clustering approach, was observed.
Fig. 5(a) shows results achieved without application of CMN at the
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Fig. 4. (a) Results for CDS-based clustering with 300-dimensional
(dashed line) and 400-dimensional (solid line) i-vectors. (b) Effect
of CMN (dashed line) for system with 400-dimensional i-vectors.
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Fig. 5. (a) Effect of the BIC penalty weight applied in the first stage
of two-stage clustering scenario for various setups of the CDS-based
clustering used in the second stage. Solid line highlights the best
setup. (b) The same situation with CMN applied at the second CDS-
based stage.

second clustering stage based on i-vectors and CDS. The best per-
forming setup is highlighted by the solid line. All evaluated setups
yield the best performance for the BIC penalty weight in the range
from 3.0 to 4.0. Higher value of the BIC penalty weight invokes
less penalization for long segments and thus leads to lower under-
clustering degree. Fig. 5(b) shows the results achieved with applica-
tion of CMN in the second clustering stage. We remark that CMN
is not applied at the first stage in either case. Application of CMN
remarkably improves performance of all systems compared to the
one-stage clustering scenario. Also the optimal value of the BIC
penalty weight applied in the first stage seems to be easier to deter-
mine as all systems provide best performance for the penalty weight
of 3.5. The best performing system employing 400-dimensional i-
vectors and LDA dimensional reduction to 200 achieved SPKE of
11.8 % (52.4 % rel. impr.).

Our reasoning for different effect of CMN in case of one-stage
and two-stage clustering is following. The first BIC-based cluster-
ing stage is less prone to fail because of short duration of segments
being clustered. Moreover, as CMN is not applied, the BIC-based
stage aims to cluster the adjacent segments and thus suppress the
over-segmentation. At the second clustering stage, the number of
short segments is reduced and thus more reliable MAP estimates of
i-vectors are available. Further, CMN applied at the second stage fa-
cilitates clustering of remote segments of the same speakers acquired
under distinct conditions.

5. CONCLUSIONS

In this paper, we have described our speaker diarization system uti-
lizing clustering approach based on i-vectors extraction and cosine
distance scoring. Linear discriminant analysis is employed to cope
with the intra-speaker variability. While the system without LDA
applied provide performance similar to the baseline system, when
the nuisance variability is projected out by virtue of LDA, the perfor-
mance is significantly improved. Next, application of cepstral mean
normalization yields further improvement of performance. The
speaker error rate was reduced relatively by 31.9 % in the one-stage
clustering scenario. In the two-stage clustering scenario, speaker
error rate was further reduced. The best system achieved SPKE of
11.8 % which corresponds to 52.4 % relative improvement over the
baseline error rate of 24.8 %.

One of drawbacks of the presented speaker clustering technique
is higher computational cost. The real-time factor of the processing
time for the baseline system is 0.04 while for the best performing
two-stage system it is 0.07 (measured on a machine with Intel Core
i7@2.66GHz). Another drawback is the need of extensive database
containing several recordings of many speakers for estimation of the
LDA projection matrix.
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