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ABSTRACT

This paper investigates the use of large TDOA feature vectors to-
gether with acoustic information in speaker diarization of meetings.
TDOAs are obtained by considering all possible microphones pairs
and this approach is compared with conventional TDOA features ex-
tracted w.r.t. a reference channel. The study is carried using two
systems, the first based on Gaussian Mixture Modeling and the sec-
ond based on the Information Bottleneck approach. Results on NIST
RT06/RT07/RT09 evaluation datasets show a large speaker error re-
duction of 30% relative going from 14.3% to 10.8% for the first and
from 12.3% to 8.2% for the second whenever the feature weighting
is properly handled. Furthermore results reveal that the IB system is
more robust to different number of microphones even when all pairs
large TDOA vectors are used thus outperforming the HMM/GMM
by 25% relative (8.2% error compared to 10.8%).

Index Terms— Speaker diarization, Time Delay Of Arrival fea-
tures, Meetings Recordings, Model combination.

1. INTRODUCTION

Speaker diarization is an unsupervised learning task with the ob-
jective of finding “who spoke when” in a given audio recording.
In recent years, diarization has been applied to meeting recordings
acquired using Multiple Distant Microphones (MDM) and several
methods have been proposed to effectively use the redundancy com-
ing from the MDM audio. Beamforming techniques have been inves-
tigated where the various audio sources are merged to produce a sin-
gle high-quality audio stream [1]. The beamforming algorithm [1]
selects a reference channel based on the average cross-correlation
and performs a Delay-and-Sum combination. The Time Delay of
Arrivals (TDOA) are estimated with respect to the reference chan-
nel. Besides beamforming, the TDOA features also carry informa-
tion about the location of the current speaker and they have been
used as complementary features to conventional MFCC [2]. The
combination happens at model level, weighting the log-likelihoods
of independent GMM models estimated on each feature stream.

However, the TDOA feature statistics and quality is influenced
by several factors like the number of microphones in the array (vari-
able for each recording environment), the acoustic of the room, re-
verberation/noise and the relative position of speakers respect to the
array (see [3] for analysis). The choice of estimating delays ac-
cording to a single reference channel, chosen as the one that has
the highest average cross-correlation over the entire recording, may
be locally suboptimal since the TDOA is the result of the different
speakers placements with respect to the microphones.

In [4], authors proposed to compute TDOA between all micro-
phone pairs resulting into a large vector and to select only the five
pairs that have the highest peak-to-peak difference thus most rep-
resentative of speakers position. After that, a with-in pairs and an

across pairs quantization step is applied in order to find nine clusters
used as initialization into a conventional diarization system. This ap-
proach produced state-of-the-art performances during the Rich Tran-
scription 2009 evaluation. Instead of selecting the best pairs, those
large TDOA vectors have also been reduced to one or two compo-
nents by means of Principal Component Analysis or Discriminant
Analysis [5] with the drawback of noisy covariance matrix estima-
tions. Motivated by the performances of those large TDOA feature
vectors obtained by considering all microphone pairs in providing
a good system initialization [4, 6], this paper investigates their use
as complementary features to MFCC for diarization. In contrary
to [3, 4, 5, 6], no selection, dimension reduction nor TDOA based
initialization is performed and the use of the entire all-pairs delay
vector is investigated. The main challenge comes from the increased
dimensionality and this work will focus on how the new vector di-
mension affects the combination with MFCC features. The study is
carried using two state-of-the-art diarization systems, the first based
on HMM/GMM modeling and the second based on the Information
Bottleneck (IB) principle - a non parametric clustering framework.

The remainder of the paper is organized as follows: section 2
describes the delay feature estimation, sections 3 and 4 describe the
state-of-the-art diarization systems used in this study while section 5
presents experiments and analysis of the two systems. The paper is
concluded in section 6.

2. DELAY FEATURE ESTIMATION

TDOA features are estimated using the generalized cross correlation
phase transform (GCC-PHAT) [1]. All time delays are calculated
with respect to a reference channel. This channel is chosen based on
the signal to noise ratio or depending on the average cross correlation
of the channel with other channels. After choosing a reference chan-
nel, signal in each channel is windowed using a 500ms window.
Given two windowed signals xi(n) and xj(n), the GCC-PHAT is
defined as :

GPHAT (f) = {Xi(f)X
∗

j (f)}/{|Xi(f)||Xj(f)|} (1)

where Xi(f) and Xj(f) are the Fourier transforms of the two sig-
nals. The TDOA for these channels is estimated as

dPHAT (i, j) = argmax
d

RPHAT (d) (2)

where RPHAT (d) is the inverse Fourier transform of GPHAT (f).
Thus given M microphones in the array, the dimension of the

TDOA feature vector isM−1; in the following we will refer to those
as reference channel TDOA features. On the other hand, whenever
all possible microphones pairs are considered, i.e., Eq. (2) is com-
puted for all pairs (i, j), the dimension of the TDOA vector becomes
1
2
M(M−1) thus much larger then the previous one; in the following

we will refer to those as all pairs TDOA features.
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3. HMM/GMM DIARIZATION

This section briefly describes a conventional speaker diarization sys-
tem based on HMM/GMM models in which each speaker is repre-
sented by an HMM state with GMM emission probability [7]. Let
us designate the emission probability distribution bck of cluster ck
with log bck(st) = log

∑
r
wr

ck
N (st, μ

r
ck
,Σr

ck
) where st is the in-

put feature, N (.) is the Gaussian pdf and wr
ck

, μr
ck

, Σr
ck

are the
weights, means and covariance matrices (diagonal) corresponding
to rth mixture Gaussian of cluster ck . The diarization starts with a
uniform linear segmentation of the input into a large number of clus-
ters (speakers). Successively, at each step, a cluster pair is merged
based on a distance measure like the BIC or its modified version [7].
The merging stops when all the BIC values are less than zero. Af-
ter each merge, a Viterbi realignment of speaker boundaries is per-
formed with the estimated speaker models. Whenever multiple fea-
ture streams {sit}, e.g., MFCC {smfcc

t } and TDOA {stdoat } (ex-
tracted at the same rate) are available, the system can be extended by
considering a separate GMM model for each stream (see [2]). Let
bic(s

i
t) be the GMM model of cluster c corresponding to the feature

stream sit. A separate GMM emission distribution bick(.) is estimated
for each feature stream. A combined log likelihood is then computed
for each cluster ck as:

logLck(st) = Wmfcc log
[
bmfcc
ck

(smfcc
t )

]
+Wtdoa log

[
btdoack

(stdoat )
]

(3)
where, Wi corresponds to the weight of each feature stream
(Wmfcc + Wtdoa = 1). This combined likelihood logLck(.) re-
places the log likelihood terms log bck(.) during clustering and re-
alignment (see [2, 8] for details). It can be noticed that the log-
likelihoods in Eq. 3 are dependent on the dimension of the feature
vectors smfcc and stdoa thus increasing the dimension of the TDOA
vector from M − 1 to M(M − 1)/2 will increase the magnitude of
the second term in Eq. 3 ( log

[
btdoack

(stdoat )
]

).

4. INFORMATION BOTTLENECK DIARIZATION

This section briefly summarizes the Information Bottleneck speaker
diarization system that operates in a normalized space of relevance
variables proposed in [9]. The Information Bottleneck is a distri-
butional clustering technique introduced in [10]. Consider a set of
input variables X . The Information Bottleneck principle depends
on a relevance variables’ set Y that carries important information
about the problem. According to IB principle, any clustering C
should be compact with respect to the input representation (mini-
mum I(X,C)) and preserve as much mutual information as possible
about relevance variables Y (maximum I(C,Y )). This corresponds
to the maximization of:

F = I(C,Y )−
1

β
I(X,C) (4)

where β is a Lagrange multiplier. The IB criterion is optimized
w.r.t. the stochastic mapping p(c|x) using iterative optimization
techniques. The agglomerative Information Bottleneck (aIB) clus-
tering is a greedy way of optimizing the IB objective function [10].
The algorithm is initialized with each input element x ∈ X as a
separate cluster. At each step, two clusters are merged such that
the reduction in mutual information w.r.t relevance variables is mini-
mum. It can be proved that the loss in mutual information in merging
any two clusters c1 and c2 is given in terms of a Jensen-Shannon di-
vergence that can directly be computed from the distribution p(y|x)
in closed form. The number of clusters is determined by using a
threshold on the Normalized Mutual Information given by I(C,Y )

I(X,Y )
.
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Fig. 1. Speaker error function of all-pairs TDOA weights on development
data in case of HMM/GMM and IB Speaker Diarization. Similar graph for
the reference channel TDOA can be found in [2, 11].

In order to apply this method to speaker diarization, the set of
relevance variables Y = {yn} is defined as the components of a
background GMM (M) trained on the entire audio recording [9].
The input to the clustering algorithm is uniformly segmented speech
segments xt. The posterior probability p(yn|xt) is computed us-
ing Bayes’ rule. The speech segments with the smallest distance
(the Jensen-Shannon divergence) are then iteratively merged until
the model selection criterion is satisfied.

Whenever multiple features are available, the combination is
performed in the space of relevance variables Y [11]. Separate
GMMs with the same number of components are trained for each
feature stream. The individual components are kept aligned. i.e,
the same component of two different GMMs are estimated using
the features with same time indices. In other words, there is a
one-to-one correspondence between the GMM components. Let
{Mmfcc,Mtdoa} be the background model for the MFCC and
TDOA feature vectors. The combined distribution p(y|x) for each
segment xmfcc and xtdoa is then estimated as:

p(y|x) = Wmfccp(y|x
mfcc,Mmfcc) +Wtdoap(y|x

tdoa,Mtdoa)
(5)

This corresponds to averaging the different p(y|xi,Mi) obtained
with GMMs trained on different feature streams. After clus-
tering, the speaker boundaries are realigned. Instead of using
HMM/GMMs, the realignment is performed in the space of rele-
vance variables p(y|x) using a Kullback-Leibler divergence based
HMM system described in [11].

The entire diarization algorithm including clustering, feature
combination and realignment depends only on the relevance vari-
able distribution p(y|x). Most importantly, we can notice that com-
bination (see Eq.5) is performed with probabilities rather then log-
likelihoods as in HMM/GMM diarization, thus being less affected
by the dimension of TDOA vector.

5. EXPERIMENTS

The experiments are conducted on 24 meeting recordings from
six different meeting rooms (CMU,EDI,NIST,IDI,TNO,VT) corre-
sponding to data collected for the NIST RT06/RT07/RT09 evalua-
tions [12]. The meetings identifier as well as the number of mi-
crophones associated with each meeting are reported in Table 1.
At first, multiple channels are beamformed using the BeamformIt
toolkit [13]. MFCC features are then extracted from the beamformed
output (details about the front-end are available in [8]). Delays are
obtained both with respect to a reference channel as well as using
all possible microphone pairs. The system performance is evaluated
using Diarization Error Rate (DER) that is the sum of speech/non-
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Table 1. Meeting number, identifier and associated number of microphone for each recording.
ID Meet. #Mic ID Meet. #Mic ID Meet. #Mic
1 CMU 20050912-0900 2 9 EDI 20071128-1000 16 17 NIST 20080201-1405 7
2 CMU 20050914-0900 2 10 EDI 20071128-1500 16 18 NIST 20080227-1501 7
3 CMU 20061115-1030 3 11 IDI 20090128-1600 16 19 NIST 20080307-0955 7
4 CMU 20061115-1530 3 12 IDI 20090129-1000 16 20 TNO 20041103-1130 10
5 EDI 20050216-1051 16 13 NIST 20051024-0930 8 21 VT 20050408-1500 4
6 EDI 20050218-0900 16 14 NIST 20051102-1323 8 22 VT 20050425-1000 7
7 EDI 20061113-1500 16 15 NIST 20051104-1515 7 23 VT 20050623-1400 4
8 EDI 20061114-1500 16 16 NIST 20060216-1347 7 24 VT 20051027-1400 4
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Fig. 2. Average TDOA values in case of speaker 6 and 8 in IDI 20090129 − 1000 meeting (NIST reference notation). Left plot represents TDOA w.r.t. a
reference channel while right plot represents features w.r.t. all possible pairs in case of a single microphone array (8 microphones).

speech segmentation and speaker errors. Since we use the same
speech/non-speech segmentation across all the experiments, only
speaker error is reported for the purpose of comparison. The combi-
nation weightsWmfcc and Wtdoa (see Eq. 5 and Eq. 3) are estimated
from a development dataset composed of recordings across 6 meet-
ings rooms as in the test data set. The weights are selected as those
that minimize the speaker error on the development data set. When-
ever conventional reference channel delay features are used, the typi-
cal HMM/GMM (Wmfcc,Wtdoa)weighting is (0.9, 0.1). This con-
ventional system is considered as baseline in this work. As described
in section 3, the model log-likelihood is proportional to the feature
vector dimension thus moving from a delay vector of dimension
M−1 to a vector of dimension M(M−1)/2, will increase the delay
feature log-likelihood. Keeping the (0.9, 0.1) weighting produces a
speaker error above 20% (see Figure 1) on development data. In or-
der to compensate for this effect, weights (Wmfcc,Wtdoa) are opti-
mized on a logarithmic scale. Figure 1 (solid line) reports the perfor-
mance of the HMM/GMM on development data when the weighting
is optimized on a a logarithmic scale: it can be noticed that, when the
TDOA feature vector moves from M − 1 to M(M − 1)/2, the opti-
mal weights move from (0.9, 0.1) to (0.999, 0.001). In other words,
the effect of increase in dimensionality can be compensated by tun-
ing the feature weights (Wmfcc,Wtdoa) in a logarithmic scale.

In case of conventional TDOA features, the typical
(Wmfcc,Wtdoa) weights for IB diarization are (0.7, 0.3). Figure 1
(dashed line) also reports the performance of the IB on development
data in case of all-pairs TDOA: it can be noticed that when the
TDOA feature vector moves from M − 1 to M(M − 1)/2, the
optimal weights move from (0.7, 0.3) to (0.8, 0.2). The increased
dimensionality only marginally affects the weighting as the com-
bination is done using probabilities (see Eq. 5) in the space of
relevance variables. Table 2 summarizes the weightings in case
of conventional TDOA feature as well as all-pairs TDOAs while
Table 3 reports the speaker error obtained using such weightings
on the evaluation dataset. It can be noticed that, both in case of
HMM/GMM and IB, the error is reduced by more than 30% relative
achieving speaker errors equal to 10.8% and 8.2% respectively.
Interestingly, optimizing the weights on a logarithmic scale, make
the HMM/GMM system benefit of those large feature vectors
without the need of selecting the best pairs as in [3] nor reducing the
dimensionality as in [5].

Table 2. Weighting for MFCC and TDOA feature vectors in case of all-
pairs TDOA and reference channel TDOA obtained minimizing the speaker
error on development data set.

aIB HMM/GMM TDOA dim.
Ref. Channel TDOA (0.7,0.3) (0.9,0.1) M -1

All Pairs TDOA (0.8,0.2) (0.999,0.001) M(M − 1)/2

Table 3. Speaker Error obtained by HMM/GMM and IB diarization on eval-
uation data set; TDOA features are computed respect to a reference channel
and as all possible TDOA pairs.

aIB HMM/GMM
Ref. Channel TDOA 12.3 14.3

All Pairs TDOA 8.2 (+33%) 10.8 (+32%)

For analysis purposes, let us plot the average TDOA values in
case of meeting IDI 20090129-1000 (only one array out of the two
available, i.e., 8 microphones) for two speakers (speaker 6 and 8 ac-
cording to NIST reference files) that are merged together by both
systems into a single cluster. Figure 2 (left figure) plots the TDOA
feature values estimated w.r.t. a reference channel and the values of
the all-pairs TDOA features (right figure). In the first case only two
features exhibit a sign change, while other five features have same
sign and almost comparative values. In the second case, 13 features
out of 28 have different signs making the diarization distinguish bet-
ter in between the two speakers that are confused by the reference
channel TDOA thus suggesting that, depending on the speakers lo-
cation, the choice of a single reference channel can be suboptimal.

As previously pointed in [11], the IB system appears more ro-
bust to variation of weights across different meeting recordings. This
robustness holds also in case of all-pairs TDOA feature vectors. Fig-
ures 3 and 4 plot the meeting-wise error for the 24 recordings in
Table 1 that compose the evaluation data set in case of HMM/GMM
and IB systems. From figure 3, it can be noticed that in case of
HMM/GMM, improvements happen on recordings with larger num-
ber of microphones (7 or more) - while the new features/weights
produce some degradation in case of recordings performed with less
than 4 microphones (meetings ID 1,2,3,4,21,23,24). On the other
hand, Figure 4 shows that in case of IB diarization, improvements
are verified on recordings with larger number of microphones (7 or
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Fig. 3. Speaker Error obtained by HMM/GMM diarization the RT06/RT07/RT09 data set whenever TDOA features are computed respect to a reference
channel (yellow bars) and whenever all possible TDOA pairs are computed (green bars)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ALL
0

10

20

30

40

−S
pe

ak
er 

Er
ror

−−
>

Meeting ID

Information Bottleneck

All Pairs

Reference Channel

Fig. 4. Speaker Error obtained by IB diarization the RT06/RT07/RT09 data set whenever TDOA features are computed respect to a reference channel (yellow
bars) and whenever all possible TDOA pairs are computed (green bars)

more) with not much degradation on others as feature streams are
combined using normalized quantities (see Eq. 3) instead of log-
likelihoods (see Eq. 5) which are dependent on the feature dimen-
sion.

6. CONCLUSION AND DISCUSSIONS

Many state-of-the art diarization systems combine acoustic infor-
mation with TDOA features computed with respect to a reference
channel from the michrophone array. Previous works have shown
that this choice can be suboptimal depending on the position of the
speakers respect to the michrophone, e.g. [3], thus proposing the
use of TDOA values computed for all possible microphones pairs.
Issues related to the increased dimensionality of the vector have
been addressed selecting the most performant pairs [4] or reducing
the dimensionality of the vector [5] before using them for diariza-
tion purposes. This work investigates how those large TDOA vector
can be directly used in diarization systems and studies their com-
bination with acoustic information using two systems: a parametric
HMM/GMM system and the IB system. Experiments on 24 meet-
ings from the RT06/RT07/RT09 NIST RT evaluations reveal that
all-pairs TDOA features become effective in HMM/GMM modeling
only when the combination weights are optimized on a logarithmic
scale in order to compensate for the increased dimensionality. In this
case the speaker error is reduced by +32% relative (from 14.3% to
10.8%) w.r.t. conventional delay features and, interestingly, no need
for pair selection [4] nor dimensionality reduction [5] is needed.

Whenever IB diarization is performed, the increased dimen-
sionality marginally affects the optimal weighting and, also in this
case the speaker error is reduced by +32% relative (from 12.3% to
8.2%). This effect is due to the fact the IB system combines the
information in a normalized space of relevance variables. Further-
more, also in case of large TDOA vectors, the IB system outper-
forms the HMM/GMM being more robust to dimensionality vari-
ations achieving a speaker error of 8.2% compared to 10.8%. In
summary, whenever weighting issues are properly handled, diariz-
ing with delays obtained using all possible michrophone pairs can
reduce the speaker error by +30% relative compared to conventional
delays computed respect to a reference channel, the improvement

being larger with increasing number of microphones.1.
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