IMPROVED PRE-TRAINING OF DEEP BELIEF NETWORKS USING
SPARSE ENCODING SYMMETRIC MACHINES

Christian Plahl', Tara N. Sainath?®, Bhuvana Ramabhadran®, and David Nahamoo?

!Lehrstuhl fiir Informatik 6 - Computer Science Department
RWTH Aachen University, Aachen, Germany
2IBM T. J. Watson Research Center, Yorktown Heights, NY 10598

plahl@cs.rwth—aachen.del, {tsainath, bhuvana, naharnoo}@1,15.ibm.com2

ABSTRACT

Restricted Boltzmann Machines (RBM) continue to be a popular
methodology to pre-train weights of Deep Belief Networks (DBNs).
However, the RBM objective function cannot be maximized directly.
Therefore, it is not clear what function to monitor when deciding to
stop the training, leading to a challenge in managing the computa-
tional costs. The Sparse Encoding Symmetric Machine (SESM) has
been suggested as an alternative method for pre-training. By placing
a sparseness term on the NN output codebook, SESM allows the ob-
jective function to be optimized directly and reliably be monitored
as an indicator to stop the training. In this paper, we explore SESM
to pre-train DBNs and apply this the first time to speech recogni-
tion. First, we provide a detailed analysis comparing the behavior
of SESM and RBM. Second, we compare the performance of SESM
pre-trained and RBM pre-trained DBNs on TIMIT and a 50 hour En-
glish Broadcast News task. Results indicate that pre-trained DBNs
using SESM and RBMs achieve comparable performance and out-
perform randomly initialized DBNs with SESM providing a much
easier stopping criterion relative to RBM.

Index Terms— Deep belief network, pre-training, neural net-
work feature extraction, sparse representation

1. INTRODUCTION

In recent years, neural networks (NN) have become a major com-
ponent of state-of-the-art speech recognition systems [1]. The con-
ventional approach to train such NN is limited to few hidden layers.
Since the weights of the NN training are initialized randomly and
the objective function is non-convex, the trained weights tend to get
stuck in a poor local optimum. Recently, [2] has introduced an un-
supervised generative method to pre-train the weights of NN using
Restricted Boltzmann Machines (RBM). A NN which is pre-trained
layer by layer with RBMs is generally referred as deep belief net-
work (DBN). The main idea to pre-train NN is to provide a good
initialization of the weights and to include regularization in the train-
ing.

The concept of pre-training has been successfully adapted to the
speech recognition task as shown in [3, 4, 5]. Nevertheless, the main
issue with RBM is that the objective function cannot be maximized
directly. Instead, the concept of contrastive divergence (CD) is ap-
plied to approximate the objective function [6]. Therefore it is un-
clear which function to monitor to obtain a good training stopping
criteria, resulting in potentially high computational costs to pre-train
the weights of a NN. Sparse Encoding Symmetric Machines (SESM)
has been explored for pre-training of handwritten digits [7], but not

978-1-4673-0046-9/12/$26.00 ©2012 IEEE

4165

applied to any speech recognition task yet. Instead of using CD, the
objective function is maximized directly by SESM. In this paper, we
will show that SESM are competitive to RBMs and that SESMs pro-
vide a clear stopping criteria, whereas for RBM no such clear criteria
exists.

Our experiments are conducted on both TIMIT and a 50 hours
English broadcast news task. We use these corpora to analyze
pre-training using RBMs and SESMs, including sparsity of the
output and the weight correlation before and after pre-training. In
addition, we show that DBNs pre-trained using SESM and RBMs
achieve comparable performance and outperform randomly initial-
ized DBNSs, although SESMs are easier to train as they provide a
much easier stopping criterion when compared to RBM.

2. PRE-TRAINING OF NEURAL NETWORKS

In practice, training of the entire network at once becomes difficult
as the number of hidden layers increases and the weight connections
are initialized randomly. Instead, by training one layer at a time and
each layer separately, the training of multiple layers is successful [2].
This concept is used to pre-train DBN, where each layer is trained
in an unsupervised manner. Instead of using a random initialization
of the weights in the NN, training the weights layer by layer is an
efficient and effective method to find a good starting point for the
weights of a huge NN.

After training the weights in an unsupervised manner, the differ-
ent layers are stacked together and a supervised fine-tuning step is
applied. The fine-tuning step is the conventional training approach
of a NN using back propagation but with previously trained weights
as the starting point.

In the pre-training step, the unsupervised model is defined as
a distribution over the input vector Y through an energy function
E(Y,Z,W):

[ o~ BE(Y,2,W)
POYW) = [ POaW) = =
z Y,z
where (3 is an arbitrary constant. The weight matrix W is updated
during training to obtain the (optimal) code Z. Finding the weights
of the NN results in minimizing a loss function which is equal to the
negative log likelihood of the training data.

1 —BE(Y,z,W) 1
LW,Y:—f/eﬁ(” + =
W=-3 i),

Here, the first term in Equation 2 is the free energy, the second term
the so called log partition function. The log partition function en-
sures that we observe low energy for the (true) data distribution and

e—ﬂE(y,Z,W) )

ICASSP 2012



high values anywhere else [7]. The main issue is that the gradient of
the log partition function w.r.t. the parameters W could be hard to
estimate.

In the following sections, we will briefly describe two ap-
proaches to approximate the log partition function. Whereas RBMs
use the concept of contrastive divergence (CD) to obtain the log
partition function, SESMs replace the log partition term by adding
sparseness on the output of the neural network. RBMs have been
successfully explored for speech recognition [4, 5], but SESMs have
not yet been applied to any speech recognition tasks.

2.1. Restricted Boltzmann Machine
Restricted Boltzmann Machines are a effective way to initialize the
weights of a unsupervised trained DBN [2, 4, 5]. In order to opti-
mize the parameters the reconstruction of the input Y is taken into
account. Therefore, we distinguish the encoder step, which consists
of the forward step of the NN, and the decoder step, where the output
is reconstructed from the encoder.

In addition, depending on the distribution for the visible and hid-
den layer we distinguish a Gaussian and a Bernoulli distribution. The
energy function, including the encoder and decoder part, is described

o E(y,2,W) ==Z'"W'Y —U ~ beneZ, 3)
where U = %(deecY)2 for the Gaussian-Bernoulli distribution and
U = bL.Y for Bernoulli-Bernoulli. The bias terms for encoding
bene and decoding bge. as well as the weights W are trained using
contrastive divergence (CD) [6]. In order to estimate the log partition
function, the main idea of CD is to create the output Z by sampling
and reconstruct the input by using the sampled Z.

2.2. Sparse Encoding Symmetric Machine

In contrast to RBMs, Sparse Encoding Symmetric Machines do not
rely on an explicit contrastive term in the loss function [7]. The log
partition function is replaced by a sparseness penalty term on the
output obtained by the encoder. The sparseness term allows the di-
rect optimization of the objective function. The training of SESMs
is performed by simply minimizing the average energy in combina-
tion with the additional sparseness term of the output. Similar to the
RBM, SESM follows the encoder-decoder paradigm. The encoder
and decoder are described by:

f&nc(Y) - WTY + benm fdec(Z) - Wl(Z) + bdec (4)

where the function [ is a point-wise logistic non-linearity of the form:
l(x) = 1/(1 4+ exp(—gx)) with a fixed gain ¢ = 1 for all our
experiments.

The free energy in Eqn. 1 and Eqn. 2 of the SESM is described by

E(Y,2) = acel|Z = fenc(Y)IP +IY = facc( 2)II>. (5)

The free energy is divided into the difference between the current
observed code fen. and its optimal solution Z, scaled by a constant
ae = 1, and the difference of input Y and its reconstruction fgec.

Overall, we optimize the following loss function during training,
obtained form Equation 2 and 5:

L(W) = E,Z2)+ ash(Z)+ ar|W|1
= OZGHZ*fcnc(Y)Hg‘i"Yffdec(Z)‘% (6)
tash(Z) + oW,

where h(Z) = 3 log(1 + (*(z4)). The loss contains the free en-
ergy (Eqn. 5), a sparseness term (h(Z)) as an approximation to the
log partition function and a [;-regularization term on the weights.
Instead of sampling the output as for RBM, SESM uses the output
of the encoder directly.

4166

2.3. Sparse Encoding Symmetric Machine Training Recipe
We have modified the proposed training procedure for SESM by [7]
and the pre-training concept by [2]. The optimization of the weights
W and the code Z is difficult, so we use an iterative procedure to
first estimate the optimal code Z* and afterwards the updates of W,
bene and bgec. In order to find the best solution the gradient decent
algorithm is applied. For pre-training, we have used the following
algorithm, where loss is the loss over all training samples and lossZ
is the loss for the current sample/utterance using fixed weights W:
WHILE Aloss > 0
FOR each training sample/utterance
Compute initial value of optimal code (Z™)
WHILE AlossZ > threshold
Get gradient w.r.t. Z and update code Z
Anneal leaning rate if AlossZ < 0
Get gradient w.r.t. W and update parameter W, bepnc and bgec
IF loss < 0: anneal leaning rate n
IF fixed # of iterations OR # of anneals of n) reached: STOP

Depending on the layer to be trained we applied the following rules

to set the learning rate 7 and the sparseness parameter o:

Layer-1: Choose a high value for as to obtain a sparse output and
use a high learning rate 7) to achieve a lot of structure in the
pre-trained weights. In our experiments we set ovs = 0.2 and
n = 0.005.

Layer-n: The output should be less sparse compared to the previous
layer (current input). We decreased «s by a factor of 2 to
4, also depending on the increase/decrease of the layer size.
The learning rate ) has to be updated as well. Due to lower
sparseness in the output, a lower learning rate is required. We
decreased the learning rate by a magnitude or more.

3. EXPERIMENTAL SETUP

The experiments are performed on a small and a large vocabulary
task. First, the small vocabulary recognition experiments are con-
ducted on TIMIT [8] and results are reported on its core test set.
Large vocabulary experiments are conducted on a English broadcast
news (BN) transcription task. Models are trained on 50 hours of data
from the 1996 + 1997 English Broadcast News Speech Corpora and
results are reported on 3 hours of the EARS Dev-04f set.

For training and testing the NN on TIMIT we have created a
set of discriminatively trained features using the boosted Maximum
Mutual Information (BMMI) criterion. For BN, vocal tract length
normalized cepstral features are used. In the fine tuning step the
NNs are trained on the context dependent triphone states, observed
by a previously trained HMM model. In recognition, the posteriors
derived from the NN are used for decoding rather than as features
for a HMM model. All experiments are performed using the IBM
speech recognition toolkit [9].

4. RESULTS

We ran several experiments keeping the starting point of the weights
for pre-training of RBM and SESM the same. First we present a
detailed analysis performed on TIMIT. Next, we demonstrate the
competitive performance of RBM and SESM using TIMIT and BN.

4.1. Stopping Criteria

As mentioned above, the main issue of the RBM training is that a
clear criteria to stop the pre-training is missing. Typically the mean
squared error (MSE) between the input an its reconstruction, an in-
dicator how well the reconstruction is done, is used to measure the
training performance. As shown in Figure 1(a) the MSE is decreased
over all iterations. Whereas the MSE is not correlated to the loss,
the free energy is, see Eqn. 2. Since the free energy could not be



T T
MSE-layer-1

15

110

'

(a) MSE of a RBM

Free Energy

0 10 20 3 40 50 60 70 &0 80 100
Epochs

(c) Approximation to the free energy of a RBM

— - v r v - r 1
\ SESM-MSE-1
65 \ SESM-MSE-2

(b) MSE of a SESM

—— SESM-Loss-1
—— SESM-Loss2

(d) Loss of a SESM

Fig. 1. Development of the MSE for RBM (a) and SESM (b) and the approximated free energy for RBM (c) and the loss of SESM (d).

estimated directly, we use an approximation. Nevertheless, the dif-
ference in free energy between consecutive iterations of an RBM is
decreasing over all iterations as shown in Figure 1(c). Even when the
MSE and the loss of an RBM seem to behave similarly, no clear cor-
relation is observed. In contrast, the loss of a SESM is optimized
directly. Depending on the parameters used, the MSE decreases
monotonically if the sparseness value and learning rate are set very
low —green curve in Figure 1(b) and (d) Using the recipe presented
in Section 2.3, we obtain a different behavior. During training, the
MSE gets worse, while the overall loss is decreased (blue curve).
The most important and dominant term in the loss function of the
SESM belongs to the MSE term, see Equation 6. When the MSE is
very low, sparseness becomes more significant resulting in a sparse
output. Even though MSE increases, the overall loss still decreases
as illustrated in Figure 1(d). Here, the MSE and the loss start to in-
crease and after 3 and 8 iterations respectively. After annealing the
leaning rate the loss is decreased slightly, whereas the MSE increases
further and we obtain more sparseness on the output.

Due to the interaction of sparseness and MSE term in the objec-
tive function, Figure 1(b) indicates that the MSE is not the optimal
criteria to stop the training of SESMs. Furthermore, we have not
observed any improvements compared to the random initialization,
when a fine-tuning step is performed using the weights with lowest
MSE (results not reported).

Overall, the change in the objective function and adaptation of
the leaning rate are more reliable as stopping criteria for training. In
our experiments on TIMIT, the stopping criteria was reached after 14
iterations when the final number of annealing steps was reached. For
RBMs no such indicator exists. We have observed subsequently that
if we decrease the number of iterations to train an RBM to match the
SESM, the final WER after fine-tuning for both RBM and SESM is
the same. However, on the BN task, we have observed a 0.6% abso-
lute difference —from 27.1% to 26.5%— even though the number
of training iterations are doubled for the RBM.

4167

4.2. Sparseness and Weight Correlation

In addition to the previous experiments, we analyzed the sparseness
of the output produced by the SESM and the correlation between the
weight matrix before and after fine-tuning.

In order to maximize the objective function of a SESM directly, a
sparseness term is added to the loss, resulting in a sparse output —ro-
bust against noise in the data— rather than a sparse representation of
the weights. Sparse weights seems to be harmful in early training
iterations of an RBM [4]. While we can control the sparseness of the
code produced by a SESM, RBMs do not have an explicit sparseness
term in the objective function. We have calculated the sparseness of

——RBM
03 —— SESM

Frequency

1} 0.0s 01 015 02 025 03 035 04
Perecentage of Sparse Hidden Units

Fig. 2. Output activation for RBM and SESM.

the output activation of the first layer of an RBM and a SESM over
250k frames. As shown in Figure 2 the output activations of the
first layer of a SESM are much sparser than the output activations
of an RBM, where no sparseness term exists. As expected, SESM
contains only a few high activations, while the RBMs contain many
more high activations. Moreover, when we take all values lower than
0.001 into account, the sparseness of an RBM is around 14.6% and
for SESM 22.7%.



—— . .
1) 1|
it |
ost | | l
o ]
o |
af

W w1 m  m W m w0

(a) Weights before fine tuning (h) Tmage of nretrained weights

8 & & ¥ 8 & & s

® W % ™m0 % M o 0 ® W m me M % % w0 4w W

(c) Weights after fine tuning (d) Image of the final weight matrix
Fig. 3. Weights of layer-1 pre-training by SESM, (a) and (b), and
after fine tuning, (c) and (d).

Furthermore, as shown in Figure 3, the pre-training of the
weights discovers a hidden structure in the data and peaks are local-
ized. After fine-tuning a high correlation between the pre-trained and
fine-tuned weights exists. Moreover, the localized high weight acti-
vations are been enlarged, to distinguish the target classes, whereas
the global weight structure is kept.

Table 1. Phonetic error results (PER) after fine-tuning of a 4 layer
network on TIMIT. The results are for random weights initialization,
pre-training by RBMs and SESMs.

NN weight initialization [%]
Random RBM  SESM
20.7 19.3 19.1

4.3. Experiments on Broadcast News

The final results for TIMIT using the recipe described in Section 2.3
are presented in Table 1. We extended the application of SESM to
the BN task, keeping in mind the lessons learned from TIMIT. Ta-
ble 2 illustrated the results obtained on the BN task using random
initialization and pre-training via RBMs and SESMs. As shown in
[5] for several feature sets on the same task, DBNs improve over a
GMM/HMM system. While the RBM is 0.2% absolute better in per-
formance when compared to the SESM, both forms of pre-training
outperform random initialization. Overall, we obtained a relative
improvement of 8% on the TIMIT task and 3% on the BN task.

Table 2. Word error results (WER) after fine-tuning of a 4 layer
network on BN. The results are for random weights initialization,
pre-training by RBMs and SESMs.

NN weight initialization [%]
Random RBM SESM
26.5 25.6 25.8

Further improvements can be obtained by mixing RBM and
SESM pre-training. We are able to improve over the best 3-layer
RBM result of 27.1% [5] by 0.3% absolute to a final WER of 26.9%
by pre training the first layer via a SESM and the second via a RBM,
which benefits from the sparse output obtained from the SESM.
When the first two layers are trained via SESM followed by a third
layer that is trained via a RBM, we do not observe any improvements
over the best results. Further investigation are necessary to uncover
the best configuration.

4168

5. SUMMARY AND CONCLUSION

In this paper, we examined an alternative and competitive method to
pre-train weights of a neural network for initialization the weights
for a final NN training pass using back propagation. While the RBM
relies on CD, SESM directly optimizes the objective function. More-
over, SESM provides an easy criteria to stop the training, leading to
fewer iterations. Independently of using RBM or SESM, we achieve
up to 8% relative in PER on TIMIT and up to 3% relative in WER on
BN by pre-training. By mixing the two approaches we improve over
the best 3-layer based system even further by 0.3% WER absolute.

We also performed a detailed analysis of the weights before
and after pre-training and examined the sparseness of the output of
SESM and RBM. We showed that during fine-tuning, structure of
the pre-trained weights is preserved while the dynamic range of the
weights is enlarged. As the sparseness of the SESM is directly con-
trolled and can be optimized, it can be tuned to directly impact WER.

Further investigations are necessary to find the best combination
of RBM and SESM and to establish the sensitivity to the pre-training
of the first layer. Additionally, a fine-tuning step after each layer
could be useful.

6. ACKNOWLEDGEMENT

Thank you to Marc’Aurelio Ranzato for useful discussions related
to SESMs. This work was partly realized as part of the Quaero Pro-
gramme, funded by OSEO, French State agency for innovation.

7. REFERENCES

[1] M. Sundermeyer et.al, “The RWTH 2010 quaero ASR evalua-
tion system for English, French, and German,” in Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, Prague,
Czech Republic, May 2011, pp. 2212-2215.

[2] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh, “A
fast learning algorithm for deep belief nets,” Neural Computa-
tion, vol. 18, no. 7, pp. 1527-1554, July 2006.

[3] Abdel-rahman Mohamed, Dong Yu, and Li Deng, “Investiga-
tion of full-sequence training of deep belief networks for speech
recognition,” in Interspeech, Makuhari, Japan, Sept. 2010, pp.
1692-1695.

[4] Frank Seide, Li Gang, and Yu Dong, “Conversational Speech
Transcription using context-dependent Deep Neural Network,”
in Interspeech, Florence, Italy, Aug. 2011, pp. 437-440.

[5] Tara N. Sainath, Brian Kingsbury, Bhuvana Ramabhadran, Petr
Fousek, and P. Novak, “Making Deep Belief Networks effec-
tive for Large Vocabulary Continuous Speech Recognition,” in
Proc. IEEE Automatic Speech Recognition and Understanding
Workshop, Hawaii, USA, Dec. 2011.

[6] Geoffrey E. Hinton, “Training products of experts by minimiz-
ing contrastive divergence,” Neural Computations, vol. 14, no.
8, pp. 1771-1800, Aug. 2002.

[7] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun,
“Sparse feature learning for deep belief networks,” in Advances
in Neural Information Processing Systems, 2007.

[8] Lori F. Lamel, Robert H. Kassel, and Stephanie Seneft, “Speech
database development: Design and analysis of the acoustic-
phonetic corpus,” in Proceedings of the DARPA Speech Recog-
nition Workshop, 1986, pp. 100-110.

[9] Hagen Soltau, Georg Soan, and Brian Kingsbury, “The IBM
Atilla Speech Recognition Toolkit,” in /EEE Workshop on Spo-
ken Language Technology, Berkley, CA, USA, May 2010, pp.
97-102.



