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ABSTRACT

Segment based direct models have recently been used to im-
prove the output of existing state-of-the-art speech recogniz-
ers. To date, however, they have relied on an existing HMM
system to provide segment boundaries. This paper takes ini-
tial steps at using these models on their own, first by develop-
ing a segment-based maximum entropy phone classifier, and
then by utilizing the features in a segmental conditional ran-
dom field for recognition. To produce a feature representa-
tion that is independent of segment length, we utilize a set
of ngram features based on vector-quantized representations
of the acoustic input. We find that the models are able to
integrate information at different granularities and from dif-
ferent streams. Contextual information from around the seg-
ment boundaries is particularly important. We obtain compet-
itive results for TIMIT phone classification, and present initial
recognition results.

Index Terms— Segmental Conditional Random Fields,
Maximum Entropy, Speech Recognition

1. INTRODUCTION

Recently, a number of direct segmental models have been pro-
posed. Segmental Conditional Random Fields (SCRFs) [1],
Conditional Augmented Models [2] and Structured SVMs [3]
all perform a segment-level analysis of an utterance, using
features which are fundamentally different from those avail-
able in a frame-wise analysis. Such segment models have
two basic advantages. First, they enable new classes of fea-
tures to be used, where segment boundaries are an integral
part of the feature definition, and frame-wise conditional in-
dependence assumptions are no longer present. Examples of
these features are segment length [4], template matching dis-
tances [5, 6, 7], and Fisher Kernel scores [2, 3]. The second
advantage is that their log-linear form allows for the coherent
integration of many different types of features. For example,
[8] integrates binary, ordinal and real feature values.

To date, these models have been used to improve on the
output of existing state-of-the-art recognizers [1, 2, 3, 8], but
never independently of an existing HMM system, which has
been used to provide a lattice of potential segmentations. In
this paper, we take some initial steps at using an unaided

SCRF for recognition, first by developing and testing a set
of features for maximum entropy phone classification, and
then by using them as the basis for SCRF recognition. Due to
the model structure, the key problem that must be addressed
is how to represent a variable length segment with a fixed
length feature vector. In [2, 3], this is done by using the like-
lihood and Fisher Kernel scores of a generative model applied
to the segment. Other approaches have been based on frame-
averaging [9] and sub-sampling [10]. In this work, we use
pattern matching within a discrete vector-quantized represen-
tation of the acoustic signal. Specifically, the feature vector
consists of indicator variables signaling the presence or ab-
sence of VQ ngram patterns within the segment. Additionally,
we use position-dependent patterns (such as the presence of
an ngram prefix) which explicitly refer to the segment bound-
aries. We believe the use of continuous features may result in
improvement; however, we find a discrete VQ representation
to provide reasonable results with low computational require-
ments, and robust to parameter optimization techniques, and
thus suitable for developing the framework.

2. MODELS STUDIED

2.1. Maximum Entropy for Classification

For our classification experiments, we have used a basic max-
imum entropy setup. The probability of a class label c given
a segment of observations o is estimated as

P (c|o) =
exp(

∑
i
λifi(c, o))∑

c′
exp(

∑
i
λifi(c′, o))

The features fi, each of which measures some form of con-
sistency between the audio in the segment and the label c are
defined in Section 3. Training is done with Rprop [11] so as to
maximize the regularized conditional data likelihood. Classi-
fication enumerates the possible segment labels and outputs
the highest likelihood label.

2.2. Segmental CRF for Recognition

A graphical representation of a Segmental CRF if shown in
Fig. 1. It is a “two-layer” model in which the observations
in the bottom layer are linked to the label sequence in the
top layer. Atomic observations at the frame level are grouped
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Fig. 1. A Segmental CRF.

together into segments with precisely defined boundaries, and
the model is defined in terms of these segmentations.

Denote by q a segmentation of the observation sequences,
for example in Fig. 1 where |q| = 3. The segmentation in-
duces a set of (horizontal) edges between the states, referred
to below as e ∈ q. One such edge is labeled e in Fig. 1 and
connects the state to its left, se

l
, to the state on its right, se

r.
Further, for any given edge e, let o(e) be the segment associ-
ated with the right-hand state se

r
, as illustrated in Fig. 1. With

this notation, we represent all features as fk(se

l
, se

r, o(e)). The
conditional probability of a state sequence s given an obser-
vation sequence o for a SCRF is then given by

P (s|o) =

P
q s.t. |q|=|s| exp(

P
e∈q,k

λkfk(se
l , s

e
r, o(e)))

P
s′

P
q s.t. |q|=|s′| exp(

P
e∈q,k

λkfk(s′el , s′er , o(e)))
.

Training is done by gradient descent with a regularized
conditional maximum likelihood objective function, and a
description of the update equations and decoding recursions
may be found in [1].

In [8], this model was adapted to large vocabulary con-
tinuous speech recognition by making its states correspond
to words, and constraining the set of segmentations to those
present in a lattice from a first-pass HMM recognizer. In this
work, the states correspond to phones, and we consider all
possible segmentations and labellings.

The features used in these experiments are based on a
vector-quantized representation of the audio, using one or
more VQ streams. The features used in the classification ex-
periments are all binary - the presence or absence of a pattern
in a VQ stream. Note that when segmentation is done, binary
features may create a bias towards fewer segments since long
spans of audio can be boiled down to one or two feature
values of “1.” Therefore, for the SCRF we use “counting”
versions of the features - how many times a particular pattern
is seen. This, combined with the inclusion of unigram fea-
tures, causes each frame to be counted. A similar issue was
dealt with in a generative context in [12] by using the proba-
bility ratio of phone to anti-phone models. The discriminative
SCRF training procedure has a similar effect. The features
are illustrated in Table 1 and described further below.

3. FEATURES USED

1. Offset Feature: The offset feature always has a value
of “1” and there is one offset feature per class. Thus,
the model can learn phone priors.

VQ Sequence: l m n o | a b c d e | q r s t
Feature Values Extracted
VQ a,b,c,d,e,ab, bc, de
Prefix a,ab,abc,abcd
Suffix e, de, cde, bcde
Lead-in o, no, mno
Follow-up q, qr, qrs
Left-context o, n, m, l, lm, mn, no
Right-Context q, r, s, t, qr, rs, st
Left-boundary oa
Right-boundary eq

Table 1. Illustration of pattern-based features. The ngram
level of the VQ and context features is 2. The VQ sequence
of the hypothesized phone is shown between vertical bars.

2. Length Features: The length feature is of the form
“the phone is X and the length is Y” for each phone
and length combination up to a maximum length.

3. VQ Ngrams: Ngram count features are of the form
“the phone is X and ngram pattern P is present.” These
are created for ngram patterns seen in the data from
unigrams up to a maximum length.

4. Left and Right Context Ngrams: These features are
the same as the previous, except that the ngram counts
are extracted from a window of 4 frames immediately
to the left and right of the segment boundaries.

5. Prefix, Suffix Patterns: These features are of the form
“the phone is X and the ngram Y is a prefix/suffix of the
segment.” We used prefixes and suffixes up to length 4.

6. Lead-In, Follow-up Patterns: Lead-in and follow-up
features are similar to the prefix and suffix features, but
refer to the audio immediately to the left or right of a
segment. They are of the form “the phone is X and the
ngram Y terminates/begins immediately to the left/right
of the segment.” We used patterns of up to length 3.

7. Cross-Boundary Patterns: These features are of the
form “the phone is X and the pair of VQ symbols strad-
dling the the segment boundary is YZ.”

8. Language Model Features: The use of the left and
right context features gives clues about the identity of
the surrounding phones, and thus implicitly models
phone bigrams. To understand this effect better, we
introduced explicit language modeling features - of the
form “the phone to the left/right is X and the hypothe-
sized phone is Y.” By using the phone values from the
transcription, we can estimate the amount of potential
gain with acoustic context features.

4. EXPERIMENTAL RESULTS

4.1. TIMIT Data and Tasks

We present results for the TIMIT [13] phone classification and
recognition tasks. We use the defined development and core
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Quantization Level 1gram 2gram 3gram
128 37.6% 34.8% 34.8%
512 33.1 31.7 31.8
2048 29.7 29.6 29.5
4096 29.0 29.0 29.0
8192 28.5 28.8 28.9

Table 2. Effect of VQ granularity and level of ngram features
on classification error rate.

test sets. We follow the conventional [14] use of 48 phone
classes for modeling, and map these to the standard 39 for
scoring. Acoustic processing was done in 25 ms frames ex-
tracted every 10 ms. We used MFCC coefficients, deltas and
double-deltas based on a 40-channel Mel filterbank. Prior to
vector quantization, CMS was applied. Vector quantization
was done via k-means clustering with diagonal covariance
gaussians. Unless otherwise specified, the MFCCs, deltas and
double-deltas were quantized together. Also unless otherwise
specified, results are reported on the dev set, with results on
the core test set being explicitly presented at the end.

4.2. Classification Results

Table 2 shows the effects of different levels of VQ granular-
ity and VQ ngram order. Note that the ngram order is inclu-
sive, so e.g. 2-gram features include 1-grams. Three types of
features are used, which we term the “base features:” offset,
length and VQ ngrams. We see that two effects are visible:
performance continually improves as the granularity is made
finer; and, whereas with low-granularity VQ streams high-
order ngrams are important, with a large number of code-
words, they are not necessary.

Table 3 shows the effectiveness of adding individual fea-
tures to the base feature set. We see significant improvement
from all the features. In particular, the use of the left and right
context reduces the error rate by more than 4% absolute.

Given the large effect of left/right context features, we in-
vestigated their power relative to oracle language modeling
features. Note that the acoustic context features are at segment
boundaries, and we can therefore expect them to be a reason-
able characterization of the surrounding phones. This is in
contrast to the use of surrounding frames in a frame-wise sys-
tem. Table 4 shows this for the 8192 level VQ system of the
previous table. Using all features except those which examine
the acoustics surrounding the segment boundaries results in a
27.8% error rate. Adding the oracle LM features reduces this
by 7.3% absolute. Using instead the surrounding context fea-
tures reduces the error rate by 4.2% - over half the oracle gain
if we were given correct identities of the surrounding phones.
Thus the acoustics immediately surrounding the boundaries
may be an inexpensive surrogate for LM features (the use of
bigram features increases the computational complexity by a
factor proportional to the number of phones).

In Table 5, we present the effect of combining multiple

Feature 2048 4096 8192
Base 29.6% 29.0% 28.5%
+ Cross-Boundary 29.2 28.6 28.5
+ Prefix-Suffix 28.1 28.2 27.8
+ Lead-Follow 26.9 26.9 26.6
+ Left/Right Context 24.5 24.5 24.2
All 24.2 24.0 23.6

Table 3. Effect of adding individual features on classification
error rate. 2048 and 4096 level VQ systems use 2gm features;
8192 level VQ system uses 1gm features.

Features Dev PER
All But AM Context 27.8%
+LM Context Only 20.5
+AM Context Only 23.6
+ AM and LM Context 18.3

Table 4. Acoustic context features compared with language
modeling features.

streams of information, and results on the core test set. We
achieve results competitive with some of the best discrimina-
tively trained classification systems using continuous features
(Section 4.4).

4.3. Recognition

Having explored the use of our discrete segment features in
classification, we turn now to their use in recognition. As
noted in [12] segmental models can introduce bias, e.g. to-
wards results with fewer segments. In this work we rely on
the use of length features, unigram ngram features (whose
count is constant across frames), and the discriminative na-
ture of SCRF training to provide reasonable segment lengths.
In decoding, we have also found it beneficial to use an extra
“insertion penalty” as in conventional systems.

On the assumption that energy change might help in sig-
naling phone boundaries, we have quantized c0 and delta-c0
into a separate stream. Table 6 shows initial recognition re-
sults using a 4096 level VQ stream with the base features, all
features, and an additional c0 stream.

4.4. Discussion

In the classification task, the lowest error rate we have
achieved is 21.7%, which compares well with, e.g. 24.6%
for MMI-HMMs [15], 21.7% for HCRFs [15], 20.8% for a
continuous HCRF with distribution constraints [16], 21.1%
for large-margin GMMs [17], 21.0% for multiple segment
models [9], and 23.0% for segment NNs [18]. We note that
committee classifiers have achieved 16.8% [19].

The best recognition result obtained in these experiments
is 33.1%. This is in line with results for discrete monophone
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Streams Used Dev Core Test
8192 23.6% 25.3%
8192 + 4096 22.7 23.7
8192 + 4096 + 2048 21.6 22.1
8192 + 4096 + 2048 + c0 21.2 21.7

Table 5. Effect of adding multi-granularity VQ streams.

Features and streams Dev PER Core PER
4096 33.2% 34.1%
4096 + c0 33.0 34.0
4096 + All features 32.4 33.1

Table 6. Recognition results.

models from the literature, e.g. 35.1% from [14], and some
other systems, e.g. 35.9% for a monophone segment model
[20]; 30.5% for diphone segment model [20]; 32.1% for a
frame-level CRF with articulatory features [21], or 30.1% for
large margin HMMs [17]. However, there is a significant gap
from the best current results, e.g. [22] which achieves 19.7%
using deep neural networks and discriminative input features.
We believe that the addition of continuous features and con-
text dependent acoustic units will help close this gap.

5. CONCLUSION

This paper has described some first steps towards using direct
modeling to create segment classifiers and phone-level detec-
tors. We define a set of discrete segmental features suitable
for use in both maximum entropy segment classifiers, and
in segmental CRF phone detection. We find that the acous-
tics in the region surrounding the segment boundaries can
be effectively exploited using these features, and produces a
large fraction of the gain that could be obtained if we actu-
ally knew the surrounding phone identities. The maximum
entropy classification setup produces excellent phone classi-
fication results, and we have demonstrated the feasibility of
bottom-up SCRF phone recognition.
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