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ABSTRACT

Neural network (NN) bottleneck (BN) features are typically cre-
ated by training a NN with a middle bottleneck layer. Recently, an
alternative structure was proposed which trains a NN with a con-
stant number of hidden units to predict output targets, and then re-
duces the dimensionality of these output probabilities through an
auto-encoder, to create auto-encoder bottleneck (AE-BN) features.
The benefit of placing the BN after the posterior estimation network
is that it avoids the loss in frame classification accuracy incurred by
networks that place the BN before the softmax. In this work, we in-
vestigate the use of pre-training when creating AE-BN features. Our
experiments indicate that with the AE-BN architecture, pre-trained
and deeper NNs produce better AE-BN features. On a 50-hour En-
glish Broadcast News task, the AE-BN features provide over a 1%
absolute improvement compared to a state-of-the-art GMM/HMM
with a WER of 18.8% and pre-trained NN hybrid system with a
WER of 18.4%. In addition, on a larger 430-hour Broadcast News
task, AE-BN features provide a 0.5% absolute improvement over a
strong GMM/HMM baseline with a WER of 16.0%. Finally, sys-
tem combination with the GMM/HMM baseline and AE-BN sys-
tems provides an additional 0.5% absolute on 430 hours over the
AE-BN system alone, yielding a final WER of 15.0%.

Index Terms— Deep Belief Networks, Speech Recognition

1. INTRODUCTION

Artificial neural networks (ANNs) [1] are a popular acoustic mod-
eling technique in speech recognition systems. Perhaps the most
popular ANN to date is the multi-layer perceptron (MLP), which or-
ganizes non-linear hidden units into layers and has full weight con-
nectivity between adjacent layers. During training, these weights are
initialized with small random values. MLPs are used to estimate a
set of state-based posterior probabilities, which are used in a variety
of ways. In a hybrid system [1], these probabilities are used as out-
put probabilities of a Hidden Markov Model (HMM). Alternatively,
approaches such as TANDEM [2] and bottleneck features (BN) [3]
derive a set of features from the MLP, which are then used as input
features into a traditional Gaussian Mixture Model (GMM)/HMM
system. Typically, TANDEM and BN methods have performed bet-
ter relative to hybrid systems.

One reason for this is that MLP training is initialized from ran-
dom weights and the objective function is non-convex, so training
can get stuck in a poor local optimum. While this has not been a
serious hindrance for MLPs having one or two hidden layers that
are trained using stochastic gradient descent [4], it poses a more se-
rious challenge for deeper MLPs. Recently, Restricted Boltzmann
Machines (RBMs) [5] have been explored to pre-train weights of
ANNSs in an unsupervised fashion. This pre-training allows for a
much better initial weight estimate, addressing the problems with
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MLP training. An ANN which is pre-trained with RBMs is gener-
ally referred to as a deep belief network (DBN). When DBNSs are
used in a hybrid architecture, they have shown promising results for
various ASR tasks [6], [7]. Recently, extracting BN features from
DBNSs, has also shown improvements over extracting bottleneck fea-
tures from randomly initialized MLPs [8].

The most common approach to extract BN features is to train a
DBN with a narrow bottleneck middle layer. For example, a typical
network topology could be 360-1024-40-1024-384, where 360 is the
dimensionality of the input feature, 1024 is the number of hidden
units, and 384 is the number of output targets. This architecture is
used in many ways in the literature [3], [8]. In [3], raw input fea-
tures (i.e., TRAPS) with a large temporal context are input into the
MLP when deriving BN features. The intuition is that these features
are often complementary to typical short-time speech features (i.e.,
MFCCs, PLPs), and therefore concatenating the BN and original
speech features offer improvements over using the original speech
features alone. Furthermore, in [8], speech features are used as input
into a pre-trained DBN in order to extract BN features, though the
DBN hybrid system outperforms the BN system.

The goal of BN features is to derive a set of features which cap-
ture information about the good classification accuracy at the output
targets. We argue that placing a BN layer in the middle of the DBN
degrades the frame accuracy of the output targets, and therefore the
full benefit of the BN features cannot be achieved. This results in
DBN systems used to extract BN features performing better than
the BN systems themselves [8], or using BN features in tandem [3]
rather than by themselves.'

Alternatively, [10] trained an MLP without a BN layer, for ex-
ample 360-1024-1024-384. After the MLP is finished training, an
auto-encoder neural network is trained with a BN layer, to reduce
the dimensionality of the 384 output targets to 40. The auto-encoder
bottleneck (AE-BN) structure proposed in [10] allowed for gains
when combined with other systems on a large 1,800 hour GALE
Arabic task. The benefit of the AE-BN approach is twofold. First,
the AE-BN method ensures that the best achievable frame accuracy
at the output targets is obtained before further reducing dimensional-
ity. Second, the AE-BN architecture allows output targets built from
NNs coming from different feature streams to be linearly combined
before extracting a bottleneck layer, something which the typical BN
architecture [3] does not allow for. In this paper, we show that when
using typical speech features as input to the DBN, having pre-trained
and deeper networks help to improve the AE-BN further. This allows
the AE-BN features alone to provide benefits over hybrid DBN and
GMM/HMM systems trained from the same input speech features.

Our initial experiments are conducted on a 50-hour English

I'The authors are aware that [9] proposed a BN architecture which pro-
vided gains over regular speech features when not used in tandem. However,
this approach looked at modeling the context of raw features, something we
do not consider in this work.
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Broadcast News task [11]. First, we show that pre-trained and deeper
networks which allow for improvements in hybrid DBN systems also
improve the AE-BN features. Second, we show that using AE-BN
features alone offer a 1.3% absolute improvement over a state-of-
the-art [7] speaker-adapted, discriminatively trained GMM/HMM
baseline and 0.9% absolute improvement over a hybrid DBN sys-
tem. To our knowledge, this is the first use of bottleneck features
to offer improvements over a GMM/HMM baseline system when
the same features used in the baseline system are also used to gen-
erate AE-BN features. Taking the lessons learned on the 50-hour
task, we then explore AE-BN features on a larger 430-hour Broad-
cast News task, where we observe that the AE-BN features offer a
0.5% improvement over a strong GMM/HMM baseline with a WER
of 16.0%. Finally, system combination of the AE-BN and baseline
systems provides an additional 0.5% absolute improvement over the
AE-BN system alone, giving a final WER of 15.0%.

The rest of this paper is organized as follows. Section 2 de-
scribes the AE-BN system. Section 3 summarizes the experiments
performed, while the analysis of AE-BN features on 50-hours of
Broadcast News is presented in Section 4. Results using AE-BN
features on 430-hour of Broadcast News is presented in Section 5
while system combination results are discussed in Section 6. Finally,
Section 7 concludes the paper and discusses future work.

2. BOTTLENECK AUTO-ENCODER

2.1. Feature Extraction

A diagram of our bottleneck auto-encoder (AE-BN) system is de-
picted in Figure 1. First, given a set of input features, a DBN is
pre-trained and then fine-tuned using backpropagation to minimize
the cross-entropy between the set of target and hypothesized class
probabilities. In this DBN architecture, the user specifies number of
layers, number of hidden units per layer (i.e., 1024) and number of
output targets (i.e., 384). This first step is similar to DBN training
done for speech recognition applications [6], [7].

After DBN training, a neural network auto-encoder (AE) with a
BN layer of 40 is trained to reduce the dimensionality of the output
targets. The input to the AE is the 384 unnormalized log-posterior
probabilities taken before the softmax output layer. We use two lay-
ers to reduce 384 output targets to 40, where each layer reduces the
dimensionality of the previous layer by roughly a factor of three.
A softsign nonlinearity (y = x/(1 + |z|)) is used between layers,
which has been shown to be effective when training DBNs [10]. The
training criterion for the AE is the cross-entropy between the nor-
malized posteriors produced by processing the AE input and output
through a softmax. Once the AE is trained, we extract features using
the DBN weights and the weights of the AE up to the 40-dimensional
bottleneck before the softsign nonlinearity. As in [3], an LDA is ap-
plied to these features and then a GMM/HMM acoustic model is
built from these features.

2.2. Acoustic Model Training

A typical state-of-the-art LVCSR system [7] utilizes a specific recipe
during acoustic model training which makes use of feature-space
speaker adaptation (FSA), including vocal tract length normalization
(VTLN) and feature space Maximum Likelihood Linear Regression
(fMLLR), followed by discriminative training (DT). Each additional
stage in this recipe typically uses more powerful modeling tech-
niques. Bottleneck features are a type of frame-level discriminative
feature when the cross-entropy training criterion is used to train the
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Fig. 1. Structure of DBN and Bottleneck Auto-Encoder. The dotted
boxes indicate modules that are trained separately.

DBN [11]. However, discriminative training of GMM/HMM sys-
tems can be thought of as a sequence-level discriminative technique,
since typically this objective function is created from a set of correct
and competing hypotheses of the training data. Since speech recog-
nition is a sequence-level problem, usually sequence-level discrim-
inative methods have been shown to be more powerful than frame-
level discriminative methods [11].

FSA move speech features into a canonical feature space. We
hypothesize that extracting AE-BN features before FSA and then
subsequently applying FSA would undo some of the frame-level dis-
crimination in the AE-BN features. Similarly, if AE-BN features are
created after f BMMI, then some of the sequence-level discrimination
might be undone. With this intuition, we decide to create our AE-
BN features after the FSA stage, where we still obtain the benefits
of a canonical feature space without undoing any sequence-level dis-
crimination. After AE-BN features are extracted and a GMM/HMM
system is trained via maximum-likelihood on these features, we then
apply feature and model-space DT. In Section 4.2, we show experi-
ments to support our intuition of creating AE-BN features after FSA.

2.3. System Combination

BN features derived from NNs are usually complementary to base-
line systems built from typical short-time speech features. There-
fore, combining BN and baseline systems, either through tandem [3]
or model-combination [10], is typically done to improve system per-
formance. Even though our AE-BN features are extracted from a
DBN built using short-time speech features, we hypothesize that the
deepness of the DBN transforms the original speech features into a
new space which could be complementary to the original features.
In this paper, we explore model-combination, a system combination
approach where the acoustic scores are computed as a weighted lin-
ear combination of scores from the two or more systems that can
have different decision trees.

3. EXPERIMENTS

3.1. Corpora

Our experiments are conducted on an English Broadcast News tran-
scription task [11]. Two different acoustic models are used which are
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trained on 50 hours and 430 hours of data from the 1996 and 1997
English Broadcast News Speech collections and English broadcast
audio from TDT-4. The initial acoustic features are 19-dimensional
PLP features. Feature-space speaker adaptation (FSA), including
VTLN and fMLLR is first performed. Next, a set of discriminatively
trained features and models are created using the boosted Maximum
Mutual Information (BMMI) criterion. Finally, models are adapted
via MLLR to produce a state-of-the-art baseline GMM/HMM sys-
tem. The acoustic models trained on 50 hours have 3,000 states and
50,000 Gaussians (4.1M trainable parameters), while the acoustic
models trained on 430 hours have 6,000 states and 150,000 Gaus-
sians (12.2M trainable parameters). Results are reported on the
EARS Dev-04f set.

3.2. DBN+AE-BN Training

Unless otherwise specified, all DBNs use FSA features as input. In
[7], it was observed that a 6-layer DBN with 1,024 hidden units per
layer was an appropriate architecture for Broadcast News tasks. All
DBNSs are pre-trained using the procedure outlined in [7]. During
fine-tuning, the final output layer is a softmax nonlinearity with 384
output targets. Unless otherwise noted, we use 384 output targets in
all DBN experiments, obtained by clustering the context-dependent
states in the baseline GMM/HMM system. After one pass through
the data, loss is measured on a held-out set? and the learning rate is
annealed (i.e. reduced) by a factor of 2 if the held-out loss has grown
from the previous iteration [1]. Training stops after we have an-
nealed the weights 5 times. Unless otherwise noted, all DBN results
are reported using the cross-entropy loss function, due to computa-
tional benefits. Experiments with the sequence loss function [11]
utilize the MPE objective function.

One the DBN is trained, the set of weights which provides the
highest frame-classification accuracy on a held out set is taken as
the final set of weights for generating the 384 output target log-
probabilities, taken before the softmax layer. We use an AE archi-
tecture of 384-128-40-384 to reduce the dimensionality of the output
targets. Again, after one pass through the data, the cross-entropy loss
is measured on a held-out set and the learning rate is annealed by a
factor of two if the held-out loss has increased from the previous
iteration [1]. Training stops after we have annealed 5 times. The
total number of trainable parameters in our DBN + AE system is
5.0M. Once the DBN and AE-BN are trained, AE-BN features are
extracted. To fairly compare the performance of the AE-BN features
to the baseline GMM/HMM system, the acoustic model on the AE-
BN features is trained with the same number of states and Gaussians
as the baseline system.

4. ANALYSIS OF AE-BN FEATURES

4.1. Impact of Improving DBN

Past research has shown that DBN performance is improved with
deeper networks, pre-training and using a better training criterion
[6], [7]. In this section, we study the impact that a better DBN has on
the AE-BN features. First, rows (a) and (b) in Table 1 show the WER
of the AE-BN features when the DBN was trained with 4 versus
6 layers. The table confirms that a deeper network improves the
AE-BN features, similar to the trend reported in [8]. Second, the
effect of pre-training on the AE-BN features can be compared in
row (b) which uses a pre-trainined DBN and row (c) which uses a
randomly initialized MLP. The results indicate that pre-training also

2Note that this held out set is different than Dev-04f.
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improves the AE-BN system. Finally, row (d) illustrates that using
the sequence-level training criterion provides improvements to the
AE-BN system compared to using the cross entropy criterion in row

®).}

Architecture AE-BN WER
(a) DBN - 4 Layers 22.5
(b) DBN - 6 Layers 21.5
(c) MLP - 6 Layers 22.2
(d) DBN - Seq. 20.6

Table 1. Effect of Deeper Network

4.2. AE-BN Performance With Different Features

In this section, we explore what is the best feature space to extract
AE-BN features from. The following trends can be observed. First,
row (a) in Table 2 indicates a WER of 22.6% when the DBN and
AE are trained using VTLN features. Applying fMLLR processing
to AE-BN, the WER is 21.8%. One can argue that applying fMLLR
transforms AE-BN features to a canconical space and can undo some
of the frame-level discrimination of the features. This can be justi-
fied more clearly by row (b), which indicates that if the DBN and AE
are trained on VTLN+fMLLR features which preserves the canconi-
cal feature space, then the AE-BN is at 21.5%, which is slightly bet-
ter than 21.8%. Finally, row (c) indicates that training the DBN and
AE on fBMMI features results in a WER of 21.5%, which is worse
than training the DBN on VTLN+fMLLR features, and then apply-
ing discriminative training. Again, if AE-BN features are extracted
after the sequence-level discriminative fBMMI features, some of the
sequence-level power can be lost. This justifies our intuition that AE-
BN features should be extracted after the FSA stage in the LVCSR
recipe, to appropriately capture its frame-level discriminative power.

Feature AE-BN WER

(a) VTLN 22.6
+fMLLR: 21.8

(b) +fMLLR 21.5
+fBMMI: 19.3

(c) +fBMMI 21.5

Table 2. Effect of Different Features on AE-BN

4.3. Comparison of AE-BN to Other Features and Methods

In this section, we study the performance of the AE-BN features
after feature and model space DT is performed. Table 3 shows the
results for two AE-BN feature sets, one where the DBN is trained
using the cross-entropy criterion and the other using the sequence
criterion. We also compare to a baseline GMM/HMM system as
well as a strong DBN hybrid system first described in [7]. This DBN
is a 6-layer DBN with 1,024 hidden units and output targets equal
to the number of context-dependent states of the HMM (2,220). The
DBN is trained with fBMMI features using the sequence criterion.
The table indicates that AE-BN features trained via the sequence
criterion offers the best performance of all methods. The AE-BN
features provide a 0.9% absolute improvement over the hybrid DBN
system, which was not observed in [8]. We hypothesize that using an

3The authors are aware that having increased number of output targets
also improves DBN performance [7]. The impact of increased output targets
on the AE-BN will be explored in the future.



AE-BN structure as opposed to a regular bottleneck structure allows
for frame accuracy to be preserved at the output targets, allowing for
the AE-BN features to outperform the hybrid system. The 17.5%
WER is the best result to date on the Dev-04f task, using an acoustic
model trained on 50 hours of data [12].

Feature GMM/HMM | AE-BN | AE-BN DBN
Space Baseline Cross Ent. Seq. Hybrid
FSA 24.8 21.5 20.6
+fBMMI 20.7 19.3 19.0
+BMMI 19.6 18.4 18.1
+ MLLR 18.8 18.0 17.5 18.4

Table 3. WER, Models Trained on 50 Hours

Since AE-BN can be thought of as a type of frame-level dis-
criminative training, to justify the result further we explored the be-
havior of the baseline system when two rounds of discriminative
training are performed. Specifically, once an original fMMI trans-
form is learned, new lattices are created and another round of fea-
ture and model-space discriminative-training is performed. Double
fBMMI+BMMI+MLLR provides a WER of 18.4% which is worse
than both AE-BN features, further demonstrating the benefit of the
AE-BN features.

5. RESULTS ON A LARGER TASK

Now that we have studied the behavior on a small 50 hour BN
task, in this section we explore the behavior of the AE-BN fea-
tures on larger 430 hour Broadcast News task. Given FSA fea-
tures (VTLN+fMLLR), we train a 6 layer DBN 384 output targets,
the same architecture as the DBN trained on 50 hours. Note that
because sequence training is computationally expensive, we only
consider the cross-entropy criterion for these experiments. After
DBN training, we then train an AE given these 384 output probabili-
ties to extract bottleneck features, and perform maximum-likelihood
GMM/HMM training. Next, we perform feature and model-space
discriminative training to both the baseline FSA and AE-BN fea-
tures. Table 4 shows results at different stages of the LVCSR recipe.
Even on the larger task, the AE-BN offers a 0.5% absolute improve-
ment over the baseline GMM/HMM system.

Feature Space || Baseline | AE-BN
FSA 20.2 17.6
+fBMMI 17.7 16.6
+BMMI 16.5 15.8
+MLLR 16.0 15.5

Table 4. WER, Models Trained on 430 Hours

6. MODEL COMBINATION

Finally, we explore the complementarity of the AE-BN and baseline
methods by performing model combination on both the 50 and 430
hour tasks. Table 5 shows that model-combination provides a 1.1%
absolute improvement over individual systems on the 50 hour task,
and a 0.5% absolute improvement over the individual systems on
the 430 hour task, confirming the complementarity of the AE-BN
and baseline systems.
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Method 50 Hours | 430 Hours
(a) Baseline 18.8 16.0
(b) AE-BN 17.5 15.5
(c) Model Combination (a)+(b) 16.4 15.0

Table 5. Results Using Model Combination

7. CONCLUSIONS

In this paper, we explored pre-trained, deeper networks to extract
auto-encoder bottleneck (AE-BN) features from a DBN. On a 50
hour task, we showed that the AE-BN features offered more than a
0.9% absolute improvement over strong DBN and GMM/HMM sys-
tems. In addition, on a larger 430 hour task, the AE-BN features
provided a 0.5% absolute improvement over the GMM/HMM base-
line. To our knowledge, this is the first use of BN features offer
improvements over a GMM/HMM baseline when the same features
used in the baseline system are also used to generate AE-BN fea-
tures [3]. In addition, to our knowledge this is the first use of BN
features to offer improvements over a pre-trained, deep DBN with
output targets equal to the number of context-dependent states [8].
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