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ABSTRACT

Modeling the second-order statistics of articulatory trajectories is

likely to improve the performance in classifying phone segments

compared to using only linear combinations of MFCCs. Neverthe-

less, the extremely high dimensionality of the feature space spanned

by a combination of monomials of degree-1 and degree-2 makes it d-

ifficult to effectively exploit the discriminative information in the full

covariance matrix. This paper proposes a novel algorithm, dubbed

Knowledge-based Quadratic Discriminant Analysis (KnQDA), for

reducing the number of dimensions of the space spanned by degree-

1 and degree-2 monomials by using phonetic knowledge for select-

ing the set of degree-2 monomials that are most likely to improve

classification. KnQDA seeks a trade-off between overfitting and un-

dertraining, which further improves the learnability. Binary classi-

fications on all pairs of phones in TIMIT show the effectiveness of

the proposed method, especially on those phone pairs that overlap

strongly in the linear feature space.

Index Terms— Dimensionality Reduction, Knowledge-Based

Quadratic Discriminant Analysis, Phone Classification, TIMIT

1. INTRODUCTION

Stacking consecutive frames of speech parameters is perhaps the

most straightforward way of capturing information about context-

induced articulatory dynamics [1–4]. However, stacking frames may

not be the most effective representation for the purpose of automatic

speech processing, because the information is represented implicit-

ly. Thus, some further processing is required to make the dynamics

explicit [3]. Linear combinations of nearby frames [1,5], such as the

velocity and acceleration (Δ, ΔΔ) of acoustic parameters (MFCC,

PLP, etc.) do capture the local and short-term part of the dynam-

ics. However, these parameters cannot capture the gestural dynam-

ics at the level of (demi-)syllables implicit in stacks of consecutive

frames. The long-term dynamics of the articulatory gestures results

in non-linear correlations between frames at a distance correspond-

ing to (demi-)syllables. Explicit modeling of second-order statistics

in [6,7] and implicit modeling by means of a polynomial kernel in [8]
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have shown to be effective in improving the performance of phonet-

ic classification and automatic speech recognition (ASR). Thus, it is

useful to extend the original feature space with degree-2 monomials.

Stacking frames of 15 – 25 frames of MFCC (or PLP) parame-

ters results in a highly redundant feature space ( ≥ 200 dimensions).

Adding degree-2 monomials will make it even more difficult to find

the relevant information. Moreover, a large proportion of the mono-

mials are likely to harm a subsequent classifier, rather than help it [9].

Therefore, it is necessary to select a subset of the monomials. As an

important side-effect, reducing the number of monomials reduces

the model complexity [10] and may help to prevent overfitting in the

full space spanned by the monomials.

In order to model the speech trajectories in MFCC stack-

s, this paper proposes a novel dimensionality reduction algorith-

m called Knowledge-based Quadratic Discriminant Analysis (Kn-

QDA), which aims to extract the discriminative information from

the high-dimensional degree-2 monomial feature space under the

guidance of specific linguistic knowledge. KnQDA first utilizes the

covariance estimators and linguistic knowledge to learn the inter-

pretable and discriminative monomials from the huge space with a

trade-off between overfitting and undertraining, and then generates a

low-dimensional projection by optimizing the discriminant objective

function.

The rest of this paper is organized as follows. Section 2 proposes

our approach. Section 3 describes the data, the feature extraction

procedure, and the experimental designs. Experimental results on

the TIMIT [11] phonetic classification task are reported in Section 4,

followed by Section 5 with general discussion and conclusion.

2. KNOWLEDGE-BASED QUADRATIC DISCRIMINANT
ANALYSIS

2.1. Feature Space Spanned by Monomials

Phones are represented by a block of M consecutive N -dimensional

MFCC vectors, stacked to form d(= M × N)-dimensional fea-

ture vectors x = (x1, x2, . . . , xd)
T . For the purpose of classify-

ing two classes of phones, we model their first and second order s-

tatistics with two multivariate normal distributions: N1(μ1,Σ1) and

N2(μ2,Σ2). The element in the ith row and jth column of Σk is de-

noted by σk
ij , k = 1, 2. Given a new token x, the theoretical optimal
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classifier can be derived from the logarithm of the likelihood ratio:

l(x) = log(
p(x|μ1,Σ1)

p(x|μ2,Σ2)
) = xTAx− 2bTx+ c, (1)

where A = Σ−1
1 − Σ−1

2 , b = Σ−1
1 μ1 − Σ−1

2 μ2, and

c = −(log |Σ1| − log |Σ2|) + (μT
1 Σ

−1
1 μ1 − μT

2 Σ
−1
2 μ2).

After discarding the non-discriminative term c, expansion of this op-

timum classifier results in:

l(x) =
d∑

i=1

d∑
j=1

aijxixj +
d∑

i=1

bixi, (2)

in which aij and bi stand for the elements of matrix A and vector b.

Eq. (2) means that, provided that the means and the covariances of

the distributions of the phone classes are known, a weighted linear

combination of monomials of degree-1 and degree-2 in x provides

the optimal separation of the two classes. However, the optimal

weights (A,b), derived from the distributions of the two classes,

are difficult to estimate, because estimating the means and the full

covariance matrices will require an amount of training data that is

seldom available, the more so if the observation vectors consist of

some 20 frames of each about 13 parameters. Therefore, ways for

estimating optimal weights from a realistic amount of training data

must be developed, which is the focus of the remainders of this pa-

per: estimating the optimal weights (A,b) to construct the quadratic

surface that separates the classes.

2.2. Learning Parameters of the Quadratic Hyperplane

From Eq. 2 it can be seen that the number of parameters needed to

specify the optimal (quadratic) surface is 1
2
d(d+1)+ d (the covari-

ance matrix is symmetric). In the case of stacks of some 20 MFCC

frames this number is comparable to or even larger than the numbers

of training tokens of some phonetic classes in the TIMIT corpus [11].

Using that high-dimensional parametric space to fit the training da-

ta probably minimizes the training error, but inevitably loses gen-

eralization capacity. Therefore, to achieve a balance between the

complexity of the classifier and training error minimization [10], we

must constrain the number of parameters in (A,b). This reduction

was also addressed for modeling the covariance matrix in [12] and

the second-order statistical features in [6].

As mentioned in Section 1, there probably exist a huge number

of harmful monomials in the feature space spanned by stacking M-

FCCs. However, linguistic knowledge can be used to indicate the

subset of the monomials whose corresponding xi and xj are inher-

ently correlated. In the next subsection, we show how to select those

relevant monomials to reach the balance between the complexity of

the classifier and minimization of the training error, which is crucial

to the subsequent discriminant analysis.

2.2.1. Knowledge-based removal of irrelevant Covariance terms

Linguistic knowledge predicts that neighboring frames will be

strongly correlated, while more distant frames are probably uncor-

related, which means that the elements on the ith row and jth col-

umn of Σ−1
1 and Σ−1

2 are also approximately identical [13] and thus

xixj does not make any contribution to the optimal classifier (E-

q. (1)). Therefore, aij in Eq. (2) becomes approximately zero and

xixj should not be involved in the discriminant analysis.

To realize this idea, the vector x should be reformatted as a ma-

trix X with the size as M×N . The time indices of elements xixj in

x are indicated by xminixmjnj . We use G
(1)
ij to indicate whether

xixj should be excluded:

G
(1)
ij =

{
0 if |mi −mj | > ηt,
1 otherwise.

(3)

This monomial selection strategy implies that if xi and xj come

from two distant frames, the corresponding monomial will be dis-

carded.

2.2.2. Data-based removal of irrelevant Covariance terms

While most irrelevant monomials can be excluded from the complete

set by applying the function G(1), the dimension of the reduced fea-

ture space might still be too high to handle in standard classifiers.

Therefore, it is important to be able to control the selection of the

monomials with the most discriminative power [10].

Consider the monomial xixj : the expected value of its mean is

E(xixj) = σ̂ij+E(xi)E(xj). Therefore, we can use the difference

of corresponding σ̂ijs in two classes to predict the difference of their

mean vectors E(1)(xixj)−E(2)(xixj), which reflects the discrim-

inative ability of the monomial xixj . Concretely speaking, whether

a monomial should be kept depends on the difference between the

σs of corresponding elements in the two classes:

G
(2)
ij =

{
1 if |σ̂(1)

ij − σ̂
(2)
ij | > α∗maxij |σ̂(1)

ij − σ̂
(2)
ij |,

0 otherwise.
(4)

If an element of the matrix G
(2)
ij is one, the corresponding mono-

mial aij is kept; if it is zero, the corresponding aij is discarded. In

Eq. (4) α varies from 0 to 1, which allows selecting the monomials

according to the contribution of the difference between correspond-

ing correlation coefficients to the discrimination between the class-

es. When α increases, the number of selected monomials will be

reduced, resulting in a reduction of the model complexity.

2.3. The Algorithm for Selecting Monomials

Here, we sketch the algorithm for selecting the relevant monomials

according to Eq. (3) and Eq. (4). Given a training set with n obser-

vations xi, (i = 1, 2, . . . , n), each observation is assigned a label

cxi = c ∈ {1, 2}. The number of observations in class c is denoted

by nc. The proposed algorithm, dubbed Knowledge-based Quadrat-

ic Discriminant Analysis (KnQDA), is described as follows:

• Map each vector x in the training set via the second-order

polynomial kernel:

φ(x) = {x1, · · · , xd, x
2
1, x1x2, · · · , xd−1xd, x

2
d}. (5)

• Given the parameters α, ηt and the estimated parameters of

Gaussian distributions of two classes, formulate the matrix G
as the dot product of G(1) and G(2) to indicate the selected

degree-2 monomials, while keeping all degree-1 monomials.
• Select the subset of φ(x) according to G to generate a vector

with reduced dimensionality which we will denote by z.This

results in a vector containing all degree-1 monomials, aug-

mented with the degree-2 monomials that are most likely to

improve the classification.
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2.4. Discriminant Analysis

We use the augmented vectors z as input to the conventional Fish-

er Discriminant Analysis (FDA) for a two-class problem [5]. This

requires finding the linear transformation that maximizes the ratio

of the trace of between class variance to the trace of within class

variance:

argmax
w

tr(wTSbw)

tr(wT Sww)
. (6)

In Eq. (6), S(w) =
∑2

j=1

∑
czi=j

(zi − μj)(zi − μj)
T is the

within-class scatter matrix and S(b) =
∑2

j=1
nc
n
(μj −μ)(μj −μ)T

is the between-class scatter matrix, where μ denotes the overal-

l mean and μj (j = 1, 2) denote the mean vectors of two class-

es. With the projection vector w, the classification of a test vector

z, comprising the monomials selected by G, can be performed by

judging the sign of wT z.

2.5. Comparison with Other Second-Order Methods

The proposed algorithm is related to other discriminant analysis

methods that can be also regarded as estimators of (A,b).

• Fisher Discriminant Analysis (FDA) [5]: Conventional F-

DA does not involve correlation terms; it sets all aij = 0, and

then optimizes b. This implies that Σ1 = Σ2 = S(w).

• Quadratic Discriminant Analysis (QDA) [14]: QDA com-

putes (A,b) by Eq. (1) with the maximum likelihood estima-

tors: (μ̂1, Σ̂1) and (μ̂2, Σ̂2).

• Regularized Discriminant Analysis (RDA) [14]: RDA s-

moothes the covariance estimators of FDA and QDA by:

Σ̂RDA
j = (1− λ)S(w) + λΣ̂j , j = 1, 2. (7)

RDA adopts the same mean estimators as QDA.

• Kernel Discriminant Analysis (KDA) [15]: KDA with the

second-order polynomial kernel implicitly estimates (A,b)
without any constraint.

3. EXPERIMENTAL SETUP

3.1. The Data: TIMIT

For our experiments we used the TIMIT database. We used the stan-

dard NIST training sets (excluding the ’sa’ utterance), the core test

set [11], and the development set [16] for training, evaluating the

performance, and tuning the parameters, respectively. The 64 phone

labels were merged into 48 classes according to [17] and the glottal

stops are excluded from the corpus.

3.2. Classification Task

Binary classifications between all pairs of phones are performed

with a k-Nearest-Neighbor (kNN) classifier and the feature vectors

formulated by stacking MFCCs after dimensionality reduction by

means of the approaches described above. Actually, the multi-class

classification task can be effectively decomposed into several binary

classification tasks [6, 8] and multi-class performance depends cru-

cially on the performance of binary classifications. Furthermore, the

parameters involved in binary classifications are likely to be more

interpretable and informative to ASR systems than those involved

Table 1: Performance Comparison Among Different Discriminant

Analysis Methods on the Most Difficult Tasks (≤ 0.90) and the Less

Difficult Tasks (≤ 0.95).

Subset FDA KDA QDA RDA KnQDA

C: ≤ 0.90 86.14 85.66 82.24 86.62 88.02
D: ≤ 0.95 90.97 91.10 87.66 91.42 92.83

D - C 92.26 92.60 89.14 92.71 94.12

with the whole multi-class classification task, which is another rea-

son of using binary classification task for performance evaluation in

this paper.

To demonstrate the effectiveness of the proposed method, we

compare its classification accuracy with the results obtained with the

four aforementioned discriminant analysis algorithms: FDA [5], K-

DA [15], QDA [14] and RDA [14]. The classification accuracy will

be reported on the core test set, with the parameters optimized on

the development set. For example, the parameters ηt, α and kKNN

in the kNN classifier are jointly tuned for KnQDA, while only one

parameter kKNN is tuned for FDA and QDA, and two parameters

kKNN , λ for RDA.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1. Performance of Crucial Binary Classifications

Excluding the silences, there are in total 946 binary pairs of phones.

A large number of phone pairs are easy to separate with the original

features. For example, confusions between a vowel and a plosive

are very rare. Therefore, we focus on classifying confusable pairs.

We define the highly confusable subsets as those pairs for which

the classification accuracy is lower than some threshold. Subset C

is chosen with the thresholds at 0.90 (representing “most difficult

task”), which includes, among others, the vowel pair /ix/ and /ih/ and

all nasals. Subset D (the “less difficult task”) contains the pairs for

which the classification accuracy is lower than 0.95. It includes, for

example, the consonant pair /b/ and /d/. The average classification

accuracy (defined as the ratio of the number of correctly classified

tokens and the total number of tested tokens in all cases of a subset)

obtained for these subsets is given in Table 1. Set C and D have

65 and 156 pairs of phones, respectively. The last row in the Table

shows the accuracy for the pairs with classification accuracy between

0.90 and 0.95, denoted by “D-C”.

From Table 1 it can be seen that RDA and KnQDA outperform

FDA in all cases, which suggests that there is some discriminative

information in the covariances. However, the performance of the

other two methods that use statistics of degree-2 monomials, KDA

and QDA, falls below the classification accuracy obtained with FDA.

Most probably, this is due to the overfitting of training data with a

relatively small training sample size. This confirms the prediction

in section 2.2 that the complexity of the classifier, represented by

the number of parameters to be estimated, is too high to achieve

generalization capacity.

It is worth mentioning that the superiority of KnQDA over RDA

can be explained by the more direct way to consider the structural

risk minimization: when λ in Eq. (7) goes to 0, the elements of

matrix A in Eq. (1) will approach zero and the model complexity

will be reduced. However, the training error is crucially dependent

on the discriminability of the features, and it cannot be guaranteed
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Table 2: The Number of Phonetic Pairs with That of Non-Vowel

Pairs in Set C and D-C Won by Four Competitive Methods

Subset FDA KDA RDA KnQDA

C 12(1) 7(3) 16(1) 37(11)
D-C 8(3) 35(18) 20(8) 41(15)

Table 3: Performance Comparison Among Different Discriminant

Analysis Methods on all Phone Pairs from One Broad Phonetic Class

Broad Class FDA KDA QDA RDA KnQDA

Plosives 93.22 93.32 90.64 94.26 95.44
Fricatives 96.11 95.66 92.98 96.34 96.69

Nasals 83.00 82.81 84.08 85.63 88.76
Semi-Vowels 92.36 92.05 89.93 93.21 94.84

Vowels 92.98 93.02 88.85 93.02 93.15
Diphthongs 96.45 95.66 94.89 96.52 95.50

that RDA finds the best features.

Table 2 shows for how many phone pairs each of four competi-

tive methods (excluding QDA) perform best in the sets C and D-C.

The proposed KnQDA performs best for most of the pairs in both

sets. The numbers in parentheses indicate the non-vowel pairs. In

the most difficult set C, KnQDA performs best in the majority of the

non-vowel pairs, which might imply that the feature trajectories in

the consonants can be better captured using the monomials xixj .

4.2. Classification within a Broad Phonetic Class

In this section, we compare the performance of the five classifiers

on phone pairs from the same broad phonetic class [18]. The ex-

perimental results are given in Table 3. It can be seen that KnQDA

outperforms the competing methods (sometimes substantially) for

all broad phonetic classes, except for the diphthongs.

For the non-vowel sounds it would seem that G(1) effectively

creates a sequence of short-span trajectories that are concatenated

in a 23-frame block. This helps in capturing fast dynamics, as in

plosives, but less so for slow dynamics, as in diphthongs. This would

also explain the fact that the advantage of KnQDA for classifying

vowel pairs (where the role of dynamic trajectories is minimal) is

quite small. The finding that KnQDA is outperformed by FDA for

the diphthongs may be due to the small number of training tokens.

Especially /aw/ and /oy/ have very small sample-to-dimension ratios.

Therefore, adopting the degree-2 monomials inevitably overfits the

training data.

5. CONCLUSIONS

In this paper we have proposed and tested an effective way to iden-

tify the degree-2 monomials that hold most promise for improving

TIMIT phone classification. The complete set of degree-2 monomi-

als added to the original features results in an extremely redundant

feature space. To alleviate the overfitting problem in a quadratic clas-

sifier, the proposed KnQDA method uses a combination of data- and

knowledge-driven techniques for identifying the set of degree-1 and

degree-2 features that provide the optimal balance between classifier

complexity and training error.

The superior performance of KnQDA and RDA in experiments

on the TIMIT corpus in which we performed binary classification of

all possible phone pairs (except silence segments) have shown that

second-order statistics features indeed improve classification perfor-

mance. The inferior performance of the approaches using all degree-

2 monomials, such as QDA, confirms that the feature selection is in-

deed necessary to avoid overfitting. By design, RDA is always better

than FDA. It appears that RDA, although less effective in finding the

most discriminative features than KnQDA when there is a sufficient

amount of training data, can outperform KnQDA if the amount of

training data becomes very small, as is the case with the diphthongs

in TIMIT.
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