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ABSTRACT
This paper presents a strategy for efficiently selecting in-
formative data from large corpora of untranscribed speech.
Confidence-based selection methods (i.e., selecting utter-
ances we are least confident about) have been a popular
approach, though they only look at the top hypothesis when
selecting utterances and tend to select outliers, therefore, not
always improving overall recognition accuracy. Alternatively,
we propose a method for selecting data looking at compet-
ing hypothesis by computing entropy of N-best hypothesis
decoded by the baseline acoustic model. In addition we ad-
dress the issue of outliers by calculating how representative
a specific utterance is to all other unselected utterances via
a tf-idf score. Experiments show that N-best entropy based
selection (%relative 5.8 in 400-hour corpus) outperformed
other conventional selection strategies; confidence based and
lattice entropy based, and that tf-idf based representativeness
improved the model further (%relative 6.2). A comparison
with random selection is also presented. Finally model size
impact is discussed.

Index Terms— N-best entropy, Acoustic modeling, Ac-
tive learning, Data selection, Speech recognition

1. INTRODUCTION

In this paper we present a method for selecting a relevant
subset of training data from a large data pool of untranscribed
speech. The increase in amount of speech data from a vari-
ety of sources, the need for effective unsupervised training
[1] is becoming more important. Transcriptions are usually
expensive and time-consuming. It is not a good strategy to
transcribe sufficient amount of speech data at random even
if raw data is easily obtained, as in the case of call cen-
ters. The objective of data selection for acoustic modeling
is to identify the relevant data, which improves the word
error rate, and to reduce the number of training examples
that must be transcribed [2]. Active learning approaches
to these kinds of problems have a long history in machine
learning research [3], and have been applied to various ar-
eas where statistical modeling techniques are used, such as
natural language processing [4] and acoustic modeling. One
of the common principles in active learning data selection
is that samples for which the predictor or recognizer has the
higher uncertainty are more informative for improving the
current model. In speech recognition the confidence score is

a common methodology for assessing this informativeness
(i.e. [2, 5]). Recently, entropy has also been explored for
calculating the uncertainty. Yu [6] proposed a unified frame-
work for active learning and semi-supervised learning based
on a global entropy-reduction principle. Hamanaka [7] pro-
posed a method for selecting data with a committee-based
approach. Another principle for active learning is that more
frequently found (more representative) samples are more
valuable for training. There are many samples with high
informativeness, but with less representativeness. These two
principles are sometimes contradictory. Many researchers
addressed this problem. For example, Huang [8] provides
a min-max framework for selecting utterances considering
both the informativeness and representativeness. However,
active learning in acoustic modeling is still challenging, more
efficient criteria are required. The key contributions of this
paper are:

• N-best entropy criterion to sufficiently reflect the uncer-
tainty in the baseline model

• The use of a phone-based tf-idf measure as a represen-
tativeness metric

• Combined informativeness and representativenessmea-
sures for data selection

This paper is organized as follows. Section 2 describes
our framework for active learning. Section 3 outlines the
informativeness criteria used in acoustic modeling, address
their problems, and propose the N-best entropy criterion. In
Section 4 we consider representativeness, introduce the tf-
idf vector representing an utterance using phone multi-grams,
and define a metric to calculate the representativeness. Sec-
tion 5 presents our experiments using a transcription task and
compares the results with conventional selection methods and
with random selection. Section 6 discusses the results and
concludes the paper.

2. OVERVIEW

Figure 1 is an outline of our active learning framework. First,
we create an initial model from a limited amount of previ-
ously transcribed speech corpus data. Next we decode all of
the utterances in the data pool using the initial model, and
obtain the N-best hypotheses for each utterance. Then we cal-
culate two statistical values; the N-best entropy, which will
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Fig. 1. Overview of our proposed method for active learning

be defined in Section 3, and the mean distance between each
sample, expressed by a tf-idf vector, and all of the other sam-
ples in the pool. These values are metrics of the informative-
ness and representativeness, respectively. Then utterances are
selected from the pool while considering both of these values.
Finally the selected utterances will be transcribed and added
to the training corpus.

3. INFORMATIVENESS CRITERIA

3.1. Previously proposed criteria

3.1.1. Confidence scores based on word confusion networks

The confidence score is important not only for active learn-
ing but also for many practical applications [9]. A frequently
used method to obtain this score is to perform word consen-
sus network decoding [10]. A word consensus network is a
sequence of bundled words (called a bin), a group of word
candidates aligned with their shared time intervals. A poste-
rior probability is assigned to each alternative word in the bin.
The probability assigned to the most possible word can be re-
garded as a confidence score (Cw). We therefore can define a
utterance (u) level confidence score as

CSu =

∑
w∈W

CwTw∑
w∈W Tw

, (1)

where W is the set of the best candidates in the utterance u
and Tw is the duration of word w [11]. CSu is the average
confidence score for utterance u. One problem with this se-
lection criterion is that it uses only the best candidate to cal-
culate scores, and so they might not sufficiently reflect the
uncertainty. Additionally low-confidence utterances are fre-
quently outliers in the distribution of the training samples, and
they do not always contribute to improve the acoustic models.

3.1.2. Lattice entropy

The decoded result of an utterance can be represented in a
word lattice structure, where a combinatorial number of hy-
potheses are present with their probabilities. Yu et al. [6] pro-
posed a lattice entropy method for evaluating the uncertainty
of utterances, which is calculated from a lattice generated by
the decoder. If Lu is the set of all path in the lattice of the
utterance u, then lattice entropyHuis defined as

HLattice
u = −

∑

q∈Lu

pqlog(pq), (2)

where pq designates the posterior probability of path q.

3.2. N-best Entropy

Lattice entropy should be affected by utterance length. More
specifically longer utterances tend to have higher entropy.
The sentence length balance for active learning has been
discussed in the natural language processing community.
Becker [12] pointed out that length-balanced sampling is an
important factor for the effectiveness of active learning for a
statistical parser. We therefore propose N-best entropy as a
metric to evaluate the uncertainty of the decoded results. If
Nu is an N-best list, then N-best entropy (H(u)) of an utter-
ance (u) is calculated from the N-best hypotheses generated
by the decoder. It is defined as

HN−best
u = −

∑

q∈Nu

pqlog(pq), (3)

where pq designates the posterior probability of the hypothe-
sis q. Additionally we should re-normalize each pq so that it

satisfies
∑

q∈Nu
pq = 1 before calculating HN−best

u . Then

we obtain the criterion which is not affected by utterance
length.

4. REPRESENTATIVENESS

As we stated in Section 1, representativenessmeans how fre-
quently a sample is found in the data pool. In other word
it is a indicator of how much a given sample is relevant to
the overall pool. We must therefore define a metric space
where utterance samples can be compared to assess the rep-
resentativeness. Yu [6] used the Kullback-Leibler divergence
between the lattices to measure the distance between corre-
sponding utterances, but it is time consuming to align all of
the paths in lattices. In addition distance calculations that is
proportional to the square of the number of utterances are re-
quired to estimate the representativeness of all of the samples
in the pool. In our approach we use a phone-based tf-idf vec-
tor to characterize each utterance and estimate the distance in
a simpler way. In this section we describe our features and
our definition of distance.
The tf-idf is one of the representations for a document in a

vector space model, and is often used in information retrieval.
The term frequency (tf) is the normalized occurrence of each
term in the document, and the inverse document frequency
(idf) is a metric of the ”importance” of that term. Both tf and
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idf are defined as

tf(term, d) =
the occurrence of term

total number of terms in d
(4)

idf(term) = log
|D|

1 + |{d : term ∈ d}|
, (5)

where |D| is the total number of documents and |{d : t ∈ d}|
is the number of documents where the term t appears. Then
the tf-idf value can be defined as the product of tf() and idf(). A
document is now characterizedwith a single tf-idf vector, with
each value corresponding to the tf-idf value of one word. If
we consider each utterance as one document and each phone
n-gram as one term, then we can calculate the tf-idf vector for
each utterance, where the dimension of vectors is the number
of distinct phone n-grams. The distance, the metric of similar-
ity between two vectors (t(uj), t(uk)), between utterance uj

and uk can be defined in various ways. The similarity (sim)
is typically defined as the direction cosine of the vectors.

sim(t(uj), t(uk)) =
t(uj) · t(uk)

|t(uj)||t(uk)|
(6)

Now we can define the representativeness of an utterance uk

in the data pool which includes Nu utterances by measuring
the average similarity with all other utterances in the pool.

θREP
uk

=
1

Nu

∑

j

sim(t(uj), t(uk)) (7)

The process of creating phone n-grams to calculate the tf-idf
vector for an utterance is descended as follows:

1. Create phone multi-grams from the initial training data
with transcriptions and forced alignments:

(a) List the phone n-grams (n = 1, . . . , L) and count
them, where cross-word-boundary n-grams are
excluded.

(b) Select the n-grams with a higher frequency than a
threshold.

(c) Segment the original phone sequences into se-
lected n-grams with the longest matches, and
filter out the unused n-grams for n ≥ 2.

2. Segment all of the base-forms in the phonetic dic-
tionary into the phone multi-grams with the longest
matches.

As shown in Figure 1, we decode each utterance and obtain
the N-best hypothesis. Then each hypothesis (word sequence)
is converted into phone n-gram sequence by referring to the
phonetic dictionary with the segmented base-forms. The N-
best phone n-gram sequence is regarded as one document, and
the tf-idf vector is calculated.
This leads to two criteria for our data selection for each

utterance. We combine them with interpolation so that if the
informativeness and representativeness of a utterance u are
θINF

u and θREP
u , then the combined criterion of u is

θCOMB
u = (θINF

u ) × (θREP
u )λ. (8)

The λ is a weighting coefficient, which should be set to max-
imize the accuracy of the development set [13].

5. EXPERIMENTS

5.1. Setup

We conducted experiments using our in-house speech corpus
of voice mail transcriptions in a business domain in English.
All of the experiments are based on speaker-independent
models that are discriminatively trained with large vocabu-
lary continuous speech recognition. We prepared two data
pools and baseline models: One is a total of 1.6 K-hours of
data (approximately 1.1M utterances) and the initial model
was created from a separate 200 hours of data. The other set is
400 hours of data with 50 hours in the initial model. 400 hours
of data and 50 hours of data are the subsets of the 1.6 K-hours
pool and the 200 hours of data, respectively. Both acoustic
models are phone-based with quinphone context-dependent
states. Table 1 shows our model parameter settings. We used
four test sets (s1, s2, s3, and s4) with different ranges of word
error rates. They included approximately 32K, 32K, 9K, and
33K words. In the test set decoding, we built the vocabularies
and 4-gram language models from the transcripts used for
the initial models (50 hours and 200 hours), and interpolated
the language models with a model built from a large tele-
phone corpus. The vocabulary sizes were 17K (50 hours)
and 37K (200 hours) respectively. We also used these LMs
for word-confusion-network generation, which is required
for calculating confidence scores [11]. We used 1-gram LM
created from the same corpus for calculating the lattice en-
tropy and the N-best entropy by considering the results of our
preliminary experiment.

Table 1. Acoustic model parameters
States Gaussians

200 h small 5 K 150 K

200 h large 8 K 240 K

50 h 5 K 150 K

As described we conducted two experiments using dif-
ferent initial models and data pools. We selected 50 hours
and 200 hours of data from the data pools of 400 hours and
1.6K hours, respectively, based on random, lowest confidence
scores, highest lattice entropies, highest N-best entropies, and
N-best entropies with the representativeness. Then we created
100-hour (50+50) models and 400-hour (200+200) models.

5.2. Results

The results are shown in Figure 2. The results of both cases
(100-hour model, 400-hour model) are similar except for the
absolute values of the accuracies. Confidence score (CS) is
better for Set s4 in the 100-hour model and for Set s3 and
s4 in the 400-hour model than random selection, which sug-
gests that CS improves the accuracy of poorly recognized ut-
terances, which is consistent with our intuition.
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Fig. 2. Comparison of the data selection strategies, CS: Confidence score, LE: Lattice entropy, N-best: N-best entropy, N-best-
R: N-best entropy with representativeness. (L) : large setup, Others: small setup

• Lattice entropy was not better than random selection in
most cases.

• To the contrary, N-best entropy (A, B in Figure 2)
achieved the highest gain over the baselines in every
case.

The relative improvements for all of the sets were 8.2% (A)
and 4.6% (B) in the 100-hour and 400-hour models respec-
tively.

• The representativeness had a negative gain in the small
setup of the 400-hour model, but improved the model
further (D, %relative 6.2) in the large setup and out-
performed not only CS and LE but also N-best entropy
alone (C, %relative 5.8) in the configuration with the
same parameters.

6. CONCLUDING REMARKS

We have described a framework for efficient data selection
using the N-best hypotheses and their entropy. We compared
our proposed method with random selection and two conven-
tional selection strategies; the confidence score and the lattice
entropy, and found that the N-best entropy with the represen-
tativeness was the best criterion tested.

7. REFERENCES

[1] S. Furui, “Generalization problem in asr acoustic model train-
ing and adaptation,” in ASRU, 2009.

[2] D. Hakkani-Tur, G. Riccardi, and A. Gorin, “Active learning
for automatic speech reognition,” in ICASSP, 2002.

[3] X. Zhu, P. Zhang, X. Lin, and Y. Shi, “Active learning from
stream data using optimal weight classifier ensemble,” IEEE
Transaction on Systems, Man, and Cybernetics, vol. 40, pp.
1607–1621, 2010.

[4] J. Zhu, H. Wang, T. Yao, and B. K. Tsou, “Active learning
with sampling by uncertainty and density for word sense dis-
ambiguation and text classification,” in COLING, 2009.

[5] G. Riccardi and D. Hakkani-Tur, “Active learning theory and
application to automatic speech recognition,” IEEE Trans.
Speech Audio Process, vol. 13, 2005.

[6] D. Yu, B. Varadarajan, L. Deng, and A. Acero, “Active learning
and semi-supervised learning for speech recognition: A uni-
fied framework using the global entropy reduction maximiza-
tion criterion,” Computer Speech and Language, vol. 24, pp.
433–444, 2010.

[7] Y. Hamanaka, K. Shinoda, S. Furui, T. Emori, and T. Koshi-
naka, “Speech modeling based on committee-based active
learning,” in ICASSP, 2010, pp. 4350–4353.

[8] S. Huang, R. Jin, and Z. Zhou, “Active learning by querying
informative and repesentative examples,” in NIPS, 2010.

[9] H. Jiang, “Confidence measures for speech recognition: A
survey,” Speech Communication, vol. 45, 2005.

[10] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in
speech recognition: word error minimization and other appli-
cations of confusion networks,” Computer Speech and Lan-
guage, vol. 14, 2000.

[11] K. Yu, M. Gales, L. Wang, and P. C. Woodland, “Unsupervised
training and directed manual transcription for lvcsr,” Speech
Communication, vol. 52, pp. 652–663, 2010.

[12] M. Becker and M. Osborn, “A two-stage method for active
learning of statistical grammars,” in IJCAI, 2005.

[13] B. Settles and M. Craven, “An analysis of active learning
strategies for sequence labeling tasks,” in EMNLP, 2008, pp.
1070–1079.

4136


