
DISTRIBUTED ACOUSTIC MODELING WITH BACK-OFF N-GRAMS

Ciprian Chelba, Peng Xu, Fernando Pereira

Google, Inc.,
1600 Amphiteatre Pkwy,

Mountain View, CA 94043, USA

Thomas Richardson

Statistics Department
Box 354322, University of Washington,

Seattle, WA 98195, USA

ABSTRACT
The paper proposes an approach to acoustic modeling that

borrows from n-gram language modeling in an attempt to

scale up both the amount of training data and model size (as

measured by the number of parameters in the model) to ap-

proximately 100 times larger than current sizes used in ASR.

Dealing with unseen phonetic contexts is accomplished

using the familiar back-off technique used in language mod-

eling due to implementation simplicity. The new acoustic

model is estimated and stored using the MapReduce dis-

tributed computing infrastructure.

Speech recognition experiments are carried out in an N-

best rescoring framework for Google Voice Search. 87,000

hours of training data is obtained in an unsupervised fashion

by filtering utterances in Voice Search logs on ASR confi-

dence. The resulting models are trained using maximum like-

lihood and contain 20-40 million Gaussians. They achieve

relative reductions in WER of 11% and 6% over first-pass

models trained using maximum likelihood, and boosted MMI,

respectively.

1. INTRODUCTION

The most common technique in dealing with data sparsity

when estimating context-dependent HMMs in automatic

speech recognition (ASR) is the well known decision tree

(DT) state clustering approach [1]. To make sure the clus-

tered states have enough data for reliable estimation, the

algorithm guarantees a minimum number of frames at each

context dependent state (leaf of the DT). At the other end of

the spectrum, states for which there is a lot more training data

than the minimum can have more mixture components. An

effective way of sizing the GMM as a function of the number

of frames n in training data is the varmix rule [2]:

log(no. mix components) = log(β) + α · log(n) (1)

Typical amounts of training data used for the acoustic

model (AM) in ASR vary from 100 to 1,000 hours. The

frame rate in most systems is 10 milliseconds, which means

that about 360 million samples are used to train the 0.5

million or so Gaussians in an ASR system. Assuming that

n = 1, 000 frames are sufficient for robustly estimating a sin-

gle Gaussian, a back-of-the-envelope calculation shows that

1,000 hours of speech would allow for a system with about

0.36 million Gaussians—quite close to values encountered in

ASR practice, see Section 4.1, or Table VI in [2]. We can

thus say that current AMs achieve “estimation efficiency”.

Recent applications have led to availability of data far

beyond those used in ASR systems. Filtering Google Voice

Search logged utterances at an adequate ASR confidence

threshold guarantees transcriptions that are close to human

annotator performance, e.g. we can obtain 87,000 hours of

transcribed speech at ASR confidence of 0.8 or higher. If we

are to strive for ”estimation efficiency” then this much speech

data would allow estimation of an AM whose size is about 40

million Gaussians.

As a first direction we chose to use longer context: the

phonetic context for an HMM state is determined by M con-

text independent phones to the left and right of the current

phone and state. We experimented with values for M =
1 . . . 5—thus reaching the equivalent of 11-phones. For such

large values of M not all M-phones (context dependent HMM

states in our model) can be reliably estimated and thus saved

in the model. We deal with unseen M-phones by backing-

off, similar to what is done in n-gram language modeling: the

context for an unseen M-phone encountered on test data is de-

creased gradually until we reach an M-phone that is present

in the model.

The next section describes our approach to increasing the

state space using back-off acoustic modeling (BAM), and ex-

plains why standard DT state-tieing does not easily scale to

such large amounts of data. Section 3 describes the BAM im-

plementation using Google’s distributed infrastructure. Sec-

tion 4 presents our experiments in an N-best rescoring frame-

work, followed by conclusions.

2. BACK-OFF N-GRAMS FOR ACOUSTIC
MODELING

Consider a short utterance whose transcription is:

W = <S> action </S>, and assume the pronuncia-

tion lexicon provides the following mapping to context-

4129978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

independent (CI) phones sil eh k sh ih n sil.

<S>, </S> denote sentence boundaries, pronounced as

long silence sil.

A typical triphone approach would model the 3 states of

ih as sh-ih+n_{1,2,3} using the decision tree cluster-

ing algorithm for tieing each of the 3 states across various

instances *-ih+*_{1,2,3}, respectively. This yields the

so-called context-dependent states in the HMM.

In contrast, BAM with M = 3 extracts the following

training data instances for the maximal order M-phone, as

well as the back-off ones:

ih_1 / eh k sh ___ n sil frames
ih_1 / k sh ___ n sil frames
ih_1 / sh ___ n frames
for the first HMM state of the ih instance in the example ut-

terance above.

To achieve this we first compute the context-dependent

state level Viterbi alignment between transcription W and

speech feature frames using the transducer composition H ◦
C ◦ L ◦W , where L, C, H denote respectively the pronun-

ciation lexicon, context dependency tree, and HMM-to-state

FST transducers [3]. From the alignment we then extract

modeling units called M-phones along with the corresponding

speech feature frames. Each M-phone is uniquely identified

by its key, e.g. ih_1 / eh k sh ___ n sil. The key

is a string representation obtained by joining on / the CI-

state, i.e. ih_1 above and the surrounding phonetic context,

in this case eh k sh ___ n sil; ___ is a placeholder

marking the position where the central CI-state ih_1 occurs

in the context.

Besides the maximal order M-phones we also collect

back-off M-phones, as outlined above. There are other possi-

ble back-off strategies, but we currently implement only the

one above: if the M-phone is symmetric (same left and right

context length) back-off at both ends; if not, then back-off

from the longer end until the M-phone is symmetric, and

proceed with symmetric back-offs from there on. With each

back-off we clone the speech feature frames from the maxi-

mal order M-phone to the back-off one. We found it useful to

augment the CI-phones with word boundaries, which has its

own symbol, and occupies its own context position.

2.1. Comparison with Existing Approaches

BAM can be viewed as a simplified DT state clustering al-

gorithm that uses question sets consisting of atomic context

independent phones, queried in a pre-defined order. The ap-

proach is not novel, see [4], and it is likely suboptimal but we

prefer it to DT AMs for ease of implementation in MapRe-

duce.

Our approach to obtaining large amounts of training data

is very similar to [2]. Table VI there highlights the gains from

using increasing amounts of training data (from 375 hours up

to 2,210 hours), and shows that past 1,350 hours a system with

9K states and about 300k Gaussians gets diminishing returns

in recognition accuracy. Our approach allows both the use of

significantly more training data and estimation of much larger

models: in our experiments we used 87,000 hours of training

data and built models of up to 1.1 million states and 40 million

Gaussians.

3. DISTRIBUTED ACOUSTIC MODELING

3.1. BAM Estimation Using MapReduce

BAM estimation and run-time are implemented using MapRe-

duce [5] and SSTable (immutable persistent B-tree1), and

draws heavily from the large language modeling approach for

statistical machine translation [6].

Each Mapper instance processes a chunk of the input data,

one record at a time. Each record consists of a key-value

pair; the value stores the waveform, the word level transcript

for the utterance, and other elements. For each record arriv-

ing at the Mapper we: generate context-dependent-state level

Viterbi alignment after composing H ◦ C ◦ L with the tran-

script W ; extract maximal order M-phones and output

< M − phone key, frames > pairs; compute back-off M-
phones and output < M − phone key, < empty >> pairs.

After shuffling, M-phones have their frame data (if they

carry any) collated and presented to the Reducer along with

the M-phone key. Every time a maximal order M-phone ar-

rives at the reducer we estimate and output a GMM from

its data (assuming the number of frames is above the lower

threshold), and also accumulate its data in the reservoirs for

all of its back-off M-phones—which are cached in a stack un-

til all instances of that back-off M-phone have arrived at the

Reducer and we can estimate and output its GMM.

For each M-phone that meets a lower threshold on the

number of frames aligned against it we estimate a GMM using

the standard splitting algorithm [7], following the varmix rule

to size the GMM. The M-phones that have more frames than

an upper threshold on the number frames (256k) are estimated

using reservoir sampling. Variances that become too low are

floored to a small value (0.00001). The resulting SSTable

stores the BAM, a distributed (partitioned) associative array

< M − phone key, GMM >.

3.2. BAM Test Run-time

At test time we rescore 10-best lists for each utterance us-

ing BAM. We load the model into an in-memory key-value

serving system (SSTable service) with S servers each holding

1/S-th of the data. For each hypothesis in the 10-best list for

an input utterance, we: generate context-dependent state level

Viterbi alignment after composing H ◦ C ◦ L with the tran-

script W ; extract maximal order M-phones; compute back-

1A format similar to SSTable has been open-sourced as part of the Lev-

elDB project http://code.google.com/p/leveldb/

4130

off M-phones; add all M-phones to a pool initialized once for

each input record (utterance).

Once the pool is finalized, it is sent as a batch request to

the SSTable service. The M-phones that are actually stored in

the model are returned to the Mapper, and are used to rescore

the alignment for each of the hypotheses in the 10-best list.

For each segment in the alignment we use the highest or-

der M-phone that was retrieved from the BAM SSTable. If

no back-off M-phones are retrieved for a given segment, we

back-off to the first pass AM score for that segment—already

computed during Viterbi alignment.

To penalize the use of lower order M-phones, we incur a

per-frame back-off cost fbo×(M−o) > 0.0 when rescoring a

segment with an M-phone of lower order o ≥ 0 than the max-

imum one M ; the order of an asymmetric M-phone is com-

puted as the maximum of the left and right context lengths.

When the model backs-off all the way to using the first pass

AM (clustered state), o = 0.

The final AM score for each hypothesis is then computed

by log-linear interpolation between the first pass AM, and the

second pass one (BAM, or first pass AM if running sanity

checks, see Table 1):

logPAM (A|W) = λ · logPfirst pass(A|W) + (2)

(1.0− λ) · logPsecond pass(A|W)

where A denotes the acoustic features, and W denotes the

word sequence.

4. EXPERIMENTS

We ran our experiments on Google Voice Search training and

test data. There are two training sets that we used in our ex-

periments:

• ML baseline: 1 million manually transcribed Voice

Search spoken queries—approx. 1,000 hours of speech

• filtered logs: 110 million Voice Search spoken queries

+ 1-best ASR transcript, filtered by confidence at 0.8

threshold—approx. 87,000 hours of speech. The whole

query-level confidence measure used for filtering is de-

rived using standard lattice-based word posteriors.

As development/test data we used two sets of manually

transcribed data that do not overlap with the training data

(the utterances originate from non-overlapping time periods

in our logs). Let’s denote them as data sets T9b/T9a, consist-

ing of 27,273/26,722 spoken queries (87,360/84,918 words),

respectively. All query data used in the experiments (train-

ing/development/test) is anonymized.

4.1. First Pass AMs

The first pass AM is estimated on the ML baseline data in

the usual staged approach after extracting 39 dimensional fea-

tures for every frame:

1. 3-state, context independent phone HMMs with single

Gaussian, diagonal covariance output distributions

2. standard decision tree clustering for triphones, 8k

context-dependent states

3. GMM splitting up to 0.33 million diagonal covariance

Gaussians; the minimum/maximum number of frames

for a given context-dependent state is 18k/256k respec-

tively; states with more than the maximum number of

frames are estimated by sampling randomly down to

256k frames; varmix estimation is used to determine

the number of mixtures according to the amount of

training data

4. boosted-MMI training [8] on the ML baseline data aug-

mented with another 10 million Voice Search spoken

queries + 1-best ASR transcript, filtered by confidence.

4.2. N-best Rescoring Experiments

The T9b development data is used to optimize the model order

M = 1 . . . 5 (triphones to 11-phones); AM weight in log-

linear mixing of first pass AM scores with the rescoring AM,

λ; language model weight: lmw; and the per frame back-

off weight: fbo. Across all experiments we kept constant

the baseline AM (in all cases the ML one trained on the ML
baseline data) and the maximum number of frames for an M-
phone state (256k). For the α/β = 0.3/2.2 setting this means

a maximum number of 92 mixture components per state.

Table 1 shows the results when rescoring 10-best with

BAM, along with the best settings as estimated on develop-

ment data. We built models for M = 1, . . . 5 but as the results

show there was no gain in performance for values of M > 2.

The first three rows show the performance, and size (in

number of Gaussians) of the maximum likelihood AM base-

line (stage 3 in Section 4.1) on the test set T9a. Somewhat

surprisingly, there is a small gain (0.3% absolute) obtained by

interpolating the first and second pass scores produced by the

ML baseline AM for the same utterance. We point out this

oddity because the same second pass alignments are rescored

with the BAM, and hence this small improvement should not

be credited to better modeling using BAM, but rather to the

re-computation of alignments in the second pass.

The first training regime for BAM used the same data as

that used for the ML part of the baseline AM training se-

quence. When matching the threshold on number of frames

with the one used for the baseline AM (18k), BAM ends

up with fewer Gaussians than the baseline AM—223k vs.

327k. This is not surprising, since no decision tree cluster-

ing is done, and the data is not used as effectively—many

triphones/1-phones are discarded, along with their data. How-

ever, its performance matches that of the baseline AM—in a

10-best rescoring setup; no claims are made about the perfor-

mance in the first pass. Lowering the threshold on the number

4131

Model WER (Sub/Del/Ins) No. Gaussians

(39 dim, diag cov)

TRAINING DATA = ML baseline data (1k hours)
ML baseline AM, λ = 0.0, lmw = 17 12.4 (1.3/2.5/8.6) 327,438

ML baseline AM, λ = 0.6, lmw = 17 11.6 (1.2/2.3/8.1) 327,438

ML baseline AM, λ = 1.0 (1-st pass), lmw = 17 11.9 (1.2/2.4/8.3) 327,438

TRAINING DATA = ML baseline data (1k hours)
BAM (min no. frames=18k, M = 1, λ = 0.8, lmw = 17, fbo = 0.0) 11.6 (1.2/2.2/8.2) 223,211

BAM (min no. frames=4k, M = 1, λ = 0.8, lmw = 17, fbo = 0.0) 11.5 (1.2/2.2/8.1) 489,640

TRAINING DATA = 1% filtered logs data (1k hours)
BAM (min no. frames=4k, M = 2, λ = 0.8, lmw = 17, fbo = 1.0) 11.3 (1.2/2.2/7.9) 600,291

TRAINING DATA = 10% filtered logs data (9k hours)
BAM (min no. frames=4k, M = 2, λ = 0.6, lmw = 17, fbo = 0.4) 10.9 (1.1/2.2/7.7) 3,974,917

TRAINING DATA = 100% filtered logs data (87k hours)
BAM (min no. frames=4k, M = 2, λ = 0.6, lmw = 17, fbo = 0.0) 10.6 (1.0/2.2/7.4) 22,210,429

Table 1. Maximum Likelihood Back-off Acoustic Model (BAM) Results on the Test Set T9a, 10-best Rescoring

of frames to 4k (26 mixture components at α/β = 0.3/2.2)

does increase the number of Gaussians in the model to 490k.

The second training regime for BAM uses the filtered logs
data, in varying amounts: 1%, 10%, 100%, respectively. A

surprising result is that switching from manually annotated

data to the same amount of confidence filtered data provides

a small absolute WER gain of 0.1-0.2%. This shows that the

confidence filtered data is just as good as the manually anno-

tated data for training AMs to be used in N-best rescoring.

From then on, BAM steadily improves as we add more

filtered logs data: the first 10X increase brings a 0.4-0.5% ab-

solute WER reduction, and the second 10X increase brings

a 0.3% absolute WER reduction. This amounts to 1.3% ab-

solute reduction (11% relative) on the one-pass baseline of

11.9% WER.

When switching to using the boosted MMI AM (stage 4 in

Section 4.1) as the first-pass AM in both training and test, the

baseline result is significantly better at 9.8% WER. Despite

the fact that it is not discriminatively trained BAM provides a

0.6% (6% relative) reduction in WER over the MMI baseline.

5. CONCLUSIONS AND FUTURE WORK

We find these results very encouraging, and think that dis-

tributed acoustic modeling is something to look into for im-

proving ASR. Expanding phonetic context is not really pro-

ductive: ”more model” by increasing M > 2 yields no gain

in accuracy, so we still need to find good ways of using large

amounts of data.

Obvious future work items that are perfectly feasible at

this scale include: DT state tieing, re-computing alignments

in ML training, and discriminative GMM training. On the

more exploratory side, non-parametric modeling techniques

hold promise with such large amounts of training data.

Acknowledgments
Many thanks to my colleagues that helped with comments,

suggestions, and solving various speech infrastructure issues,

in particular: Alex Gruenstein, Brian Strope, Doug Beefer-

man, Erik McDermott, Jeff Dean, Johan Schalkwyk, Michiel

Bacchiani, Thorsten Brants, Vincent Vanhoucke, and Will

Neveitt. Special thanks go to Olivier Siohan for help with

prompt code reviews and detailed comments.

6. REFERENCES

[1] S. Young, J. Odell, and P. Woodland, “Tree-based state

tying for high accuracy acoustic modelling,” in Proceed-
ings ARPA Workshop on Human Language Technology,

Berlin, 1994, pp. 307–312.

[2] M.J.F. Gales et al., “Progress in the CU-HTK broad-

cast news transcription system,” Audio, Speech, and Lan-
guage Processing, IEEE Transactions on, vol. 14, no. 5,

pp. 1513 –1525, September 2006.

[3] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state

transducers in speech recognition,” Computer Speech &
Language, vol. 16, no. 1, pp. 69–88, 2002.

[4] Rich Schwartz et al., “Improved Hidden Markov model-

ing of phonemes for continuous speech recognition,” in

Proceedings of ICASSP, 1984, vol. 9, pp. 21–24.

[5] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: sim-

plified data processing on large clusters,” Commun. ACM,

vol. 51, pp. 107–113, January 2008.

[6] Thorsten Brants et al., “Large language models in ma-

chine translation,” in Proceedings of the Joint Conference
EMNLP-CoNLL, 2007, pp. 858–867.

[7] Steve Young et al., The HTK Book, Cambridge Univer-

sity Engineering Department, Cambridge, England, De-

cember 2002.

[8] Dan Povey et al., “Boosted MMI for model and fea-

ture space discriminative training,” in Proceedings of
ICASSP, April 2008, pp. 4057 –4060.

4132

