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ABSTRACT

In recent work, we introduced Latent Perceptual Mapping (LPM)
[1], a new framework for acoustic modeling suitable for template-
like speech recognition. The basic idea is to leverage a reduced di-
mensionality description of the observations to derive acoustic pro-
totypes that are closely aligned with perceived acoustic events. Our
initial work adopted a bag-of-frames strategy to represent relevant
acoustic information within speech segments. In this paper, we ex-
tend this approach by better integrating temporal information into
the LPM feature extraction. Specifically, we use variable-length
units to represent acoustic events at the supra-frame level, in order
to benefit from finer temporal alignments when deriving the acous-
tic prototypes. The outcome can be viewed as a generalization of
both conventional template-based approaches and recently proposed
sparse representation solutions. This extension is experimentally
validated on a context-independent phoneme classification task us-
ing the TIMIT corpus.
Index Terms: latent perceptual mapping, template-based speech
recognition, acoustic modeling, data-driven speech units, dimen-
sionality reduction

1. INTRODUCTION

Approaches to acoustic modeling for automatic speech recognition
can be broadly categorized into template-based and statistical meth-
ods. Template-based systems operate by directly comparing the ut-
terance to be recognized with training instances known as templates.
They were common in the early days of speech recognition, but as
recognition tasks grew in perplexity, their computational require-
ments became prohibitive. Over the years, they have largely been re-
placed by statistical systems that predominantly use hidden Markov
models (HMM).

While the HMM framework leads to efficient algorithms for
training and recognition, it also entails a loss of acoustic information
via, e.g., the smoothing effects caused by inexact parametric distri-
butions, which are known to be deleterious for recognition [2]. In-
creasing the number of modeling parameters mitigates this loss, but
like template-based methods that requires significantly more compu-
tations to estimate the parameters [3]. Approaches like [4] by Axel-
rod et al. and [5] by Zhao et al. use dynamic time warping (DTW) to
compensate for the model smoothing, while other approaches forgo
the HMM framework entirely in favor of other statistical techniques
[6, 7, 8]. With the steady increase in available computational power
in recent years, interest in template-like methods [3, 9] has regained
momentum as well.

In previous work, we introduced an alternative acoustic mod-
eling framework called latent percepual mapping (LPM) [1] which
adopts a similar premise. It offers a template-like solution to acous-
tic modeling for speech recognition, with the particularity that the
acoustic information is derived from weighted frequency counts be-
tween suitable data-driven acoustic units and associated speech seg-
ments. The framework is inspired by latent semantic analysis in in-

formation retrieval [10], except that here documents are segments
of speech and units are entries in a codebook that suitably encapsu-
lates the acoustic feature space. Phoneme classification is thus per-
formed in a latent feature space after reducing the representational
dimension using singular-value decomposition (SVD). This infor-
mation extraction procedure shares its motivation with histogram of
acoustic co-occurrence (HAC) models by van Hamme [11], where
the latent structure in speech utterances is decomposed by finding
repeated acoustic patterns.

In this paper, we generalize the LPM framework by contrasting
fixed and variable-length units for building the unit-document ma-
trix. Experimental results on the TIMIT acoustic-phonetic corpus
illustrate the relationship between (generalized) LPM and conven-
tional template (frame- or DTW-based) solutions. They also serve as
backdrop to discuss links between LPM and recent efforts exploit-
ing sparse representations. The paper is organized as follows. In the
next section, we detail how to derive a suitable set of variable-length
acoustic units and integrate it into the LPM paradigm using DTW.
Section 3 discusses the parallels with sparse representations and
other template-based approaches. In Section 4, we describe the ex-
perimental setup considered. Finally, Section 5 illustrates the perfor-
mance of the proposed approach on the TIMIT context-independent
phoneme classification task.

2. LPM WITH VARIABLE-LENGTH UNITS

LPM establishes an analogy between text documents (made up of
words) and speech segments (composed of suitable acoustic units)
[1]. In the same way that words span a well-defined vocabulary,
acoustic units span a discrete set obtained by vector quantization
of the underlying speech feature vectors. The LPM approach is a
template-based framework for speech recognition; no prior model
for the phoneme segments is assumed and the steps followed to ob-
tain prototypical templates are purely data-driven. The training and
recognition steps illustrated in Figure 1 are described below.

Training comprises of three main steps: (1) extracting relevant
units from a given set of phoneme instances; (2) deriving a unit-
document co-occurrence matrix; and (3) mapping the phoneme in-
stances to a dimensionality reduced latent space after singular value
decomposition (SVD) of the co-occurrence matrix.

1. Derivation and selection of units: We assume M phoneme
segments are available for training. A codebook CN (with
N entries) is first derived after feature extraction by frame-
based analysis. The codebook is then used to vector quantize
(VQ) the feature-vectors in the training set. All, 1-gram, 2-
gram and 3-gram quantized sub-sequences in the phoneme
instances are considered together. Furthermore, based on our
results in [1] and other phoneme classification work, we also
separately considered sub-sequences obtained by partition-
ing phoneme segments in 30-40-30% sub-sequences. Note
that irrespective of the length of the sub-sequences, we take
a bag-of-acoustic-units approach instead of a bag-of-features

4125978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



UNIT DISCOVERY
+ SELECTION

FE
AT

U
RE

EX
TR

AC
TI

O
N

PHONEME
SEGMENTS

LATENT SPACE
MAPPING

INPUT 
SEGMENT RECOGNITION

TRAINING

D
O

CU
M

EN
TS

LATENT SPACE 
PROTOTYPES

PHONEME
LABEL

UNITS

[    ]DTW+
CO-OCCURRENCE

MATRIX

M X W

SVD MATRICES

[U]

M X R
[V]

R X W
[S]

R X R

SUB-SEQUENCES

1X W

DISTANCE
COMPUTATION

FE
AT

U
RE

EX
TR

AC
TI

O
N

U
N

SU
PE

RV
SD

CL
U

ST
ER

IN
G

CODE
BOOK

VE
CT

O
R

Q
UA

N
TI

ZA
TI

O
N

VE
CT

O
R

Q
UA

N
TI

ZA
TI

O
N

DTW+ 
CO-OCCURRENCE 

VECTOR
Sequence of Entries

(SoE)

Sequence of Entries
(SoE)

UNITS

[    ]

Fig. 1. Latent Perceptual Mapping using Sub-sequences for Phoneme Classification.

approach outlined in [1]. The LPM approach introduced in
[1] is in fact a special case of this approach where only units
of length 1 (1-gram) are considered.
Even for a reasonable codebook size N , the number of units
can be quite large. Some units (sub-sequences) can repeatedly
appear in a large number of phoneme instances while others
may only appear in a handful of them. In this work, we inves-
tigated different ranking methods to select a subset of those
units and show that it is indeed possible to have comparative
performance with reduced dimensional representation in the
latent space with lesser number of units. The ranking meth-
ods use two empirical measures: (1) the indexing power (Φi)
and (2) the empirical probability (π) of unit given phoneme
class. After ranking, top W units W are selected for calcu-
lating the unit-document co-occurrence matrix and the subse-
quent steps.
Indexing Power: The indexing power Φi of a unit is given by
Φi = (1− εi) where εi is the empirical entropy measure of
the ith unit,

εi =
−1

logM

m=M∑
m=1

κi,m

τi
log(

κi,m

τi
) (1)

Here κi,m is the number of times the ith unit appears in the
mth phoneme instance and τi =

∑
∀m

κi,m is the total num-
ber of times the ith unit appears in the collection complete
collection of training segments.
Empirical Probability: The empirical probability πi

p of ith

unit in a phoneme class p is given by

π
i
p =

κ
p

i

λp

(2)

where κ
p
i is the number of times the ith unit appears in in-

stances of phoneme p and λp is the total number of instances
in phoneme p.
The indexing power and the empirical probability favor
longer less frequently occurring units and shorter more fre-
quently occurring units respectively. Using the two empirical
measures it therefore possible to derive different ranks units
in the training instances and control the selection of units ac-
cordingly. The details of these are described later in section
4.

2. Co-occurrence Matrix: A M × W unit-document co-
occurrence matrix F is calculated by counting the number
times each unit in W appears in the mth phoneme instance

∀m. The (m,w)th entry of F is obtained as follows:

f(m,w) =

(∑
j∈Am Iw(j)

λm

)
· pw, (3)

where w ∈ {1, 2, . . . ,W }.

Here, λm is the total number of units in Am (the phoneme
instance). The indicator function Iw(j) = 1 iff the wth unit
in W is nearest to the jth unit in Am belonging to the mth

phoneme instance. As each unit is a sequence of vectors, dy-
namic time warping (DTW) with appropriate length normal-
ization [4] is used to determine I(·).

3. Dimensionality reduction: After obtaining F , a reduced-
rank approximation of the matrix F can be obtained by SVD
as follows:

F̂M×W = UM×R · ΣR×R · V T
W×R (4)

Here U and V are the left and right singular vector matrices
and Σ is the diagonal matrix of singular values. R essen-
tially approximates the rank of F (R ≤ min(M,W )). The
mth segment in the collection is characterized by fm, the ith

row of F . From (4), fm can be projected onto the orthornor-
mal basis formed by the row vectors of V T , or, equivalently,
the column vectors of V . This defines a new representation,
namely um · Σ, where um is the mth row of U . In essence,
the row vector:

ym = um · Σ (5)
characterizes the position of the segment m in the underly-
ing (R-dimensional) latent space. In the LPM framework,
phoneme segments from the training set are mapped to vec-
tors in the latent space and then used as acoustic prototypes.
As shown in Figure 1, obtaining the units and the resulting la-
tent perceptual space constitutes the LPM training procedure.

Classification of an unknown test segment is performed by following
the “folding in” approach illustrated in [12]. Mapping a new segment
not belonging to the original collection M is straightforward using
W and the singular vectors obtained during training. A new (test)
segment x can be represented as:

yx = ux · Σ = fx · V (6)

where fx is the unit-document feature vector associated with the new
segment (which is treated as an additional row of the matrix F ).

The similarity between two segments is obtained by a dot prod-
uct between the associated vectors in the latent space. A nearest-
neighbor rule is then adopted to predict the phoneme label of the
unknown test segment.
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Fig. 2. LPM in relation to other template-based approaches.

3. LINK WITH OTHER TEMPLATE-BASED METHODS

The extension to the original LPM approach described in the previ-
ous section involves integrating temporal information in an unsuper-
vised manner directly into the LPM feature extraction. Specifically,
we represent acoustic events via unsupervised sequences of supra-
frame units and rely on supra-frame distance metrics such as dy-
namic time warping (DTW) for deriving the unit-document matrix in
LPM. In this way, the LPM framework emerges as a generalization
of conventional DTW-based methods. In fact, by further increas-
ing the length of the units (to, say, complete phoneme segments),
the LPM framework leads to a DTW-like template comparison ap-
proach.

This aspect is illustrated in the bottom right corner of Figure 2.
This diagram depicts how LPM relates to various template-based
methods via two parameters, the number of units and the length
of the units. On Figure 2 the x-axis displays the possible length
of units expressed in frames, which varies from 1 (in which case
each frame/feature vector is its own unit) to the length of complete
phoneme segments (assuming phoneme boundaries are known). The
y-axis displays the possible number of units, which varies from the
number of segment instances available to the total number of fea-
tures extracted. For phoneme classification, DTW-based methods
operate based on the full length of all observed exemplars.

In contrast, in our original study [1], where units were frames,
we varied the number of units by unsupervised K-means clustering
of the feature vectors. By using as many units as the number of fea-
tures, the LPM framework essentially morphs into a frame-based K-
nearest neighbor (KNN) method. As the number of units decreases,
the representation becomes more parsimonious. This aspect is illus-
trated on the left hand side of Figure 2, which shows bag-of-frames
LPM moving vertically along the x = 1 line.

Finally, the top-left corner of the figure illustrates the relation-
ship with exemplar-based classification using sparse representations
(EBCSR) recently proposed by Kanevsky et al. [13]. As with KNN,
all features are presented to the classification mechanism for train-
ing, but in EBCSR, each test observation vector y is represented as
a weighted sum of T d dimensional training examples collected in
a matrix Hd×T , i.e., y = H · β, where the weight vector β sat-
isfies some suitable sparseness constraint, and therefore has only a
few non-zero elements. In other words, it is assumed that the ob-
servation y can be adequately modeled with a selected few training
instances. Clearly, this equation plays a role analogous to the LPM
expression Eq. 6 mentioned previously. Note, however, that in LPM
the notion of sparsity is, in effect, subsumed by that of dimensional-
ity reduction.

Since the matrix H in EBCSR is built from the (possibly un-
bounded) set of observations available for training, the computation
of the weight vector β may be prohibitive for large values of T . To

circumvent this issue, existing implementations typically fall back to
a nearest-neighbor paradigm, i.e, constructing Hd×k from k nearest
samples (a form of quantization) to y in the acoustic feature space
[13] and following the subsequent steps for classification.

Interestingly, LPM sidesteps the above unbounded problem by
first performing a vector quantization step on the observations, so as
to obtain a (bounded) set of N codebook entries (N � T ). Then,
the need for a sparseness constraint is effectively eliminated by con-
verting the original acoustic description of training instances into a
derived description involving unit-segment frequencies. In the same
way that the EBCSR weight vector β weighs the “best” instances
in the dictionary Hd×k to represent the data, LPM is able to rep-
resent each observation as a linear combination of the “best” data-
driven speech units obtained after projection into the latent percep-
tual space.

Thus the two frameworks offer intriguing parallels. In particu-
lar, critical parameters are closely aligned: in LPM the size of the
codebook N is analogous to k above, and the dimension of the LPM
space R is analogous to d above.

4. EXPERIMENTAL SETUP

Classification experiments were conducted on the read speech
TIMIT data using the standard NIST training and core test sets with
known phoneme boundaries. A total of 140,225 and 7,215 phoneme
instances were available for training and testing, respectively. The
original 61 phoneme classes available in the corpus was reduced to
48 labels for training and the classification experiments were ulti-
mately evaluated by mapping the 48 class labels to 39 labels. For fea-
ture vectors, 14-dimensional MFCC features with its delta and delta-
delta components were extracted every 5 ms with a 10 ms Hamming
window as acoustic features. The features were then subjected to lin-
ear discriminant analysis (LDA) using the reduced 48 phone labels.

The LPM codebook size N was set to 1000, the number of units
W varied as {102, 103, 104} and the dimensionality R varied in
steps. For each parameter setting, we separately considered both
short units (SU) consisting of 1-, 2- and 3-grams and long units (LU)
obtained by dividing a phoneme segment in 30-40-30% sub-parts.
Unit selection was performed as mentioned earlier using a combina-
tion of indexing power and empirical probability, as follows:
Method 1 (M01): This method focuses on units which appear only
a handful of times in the training instances, so we used the indexing
power Φi to rank all the units and only select the top W units for the
subsequent LPM steps.
Method 2 (M02): The method focuses on units that possess high
indexing power and high empirical probability both within a given
phoneme class. The indexing power Φi is modified to Φi

p i.e, the in-
dexing power within each phoneme class, and the final rank for each
unit is obtained as:

ρ
i
p = Φi

p ∗ πi
p (7)

after further weighting by the empirical probability of a unit within
each class.

M01 prefers longer length units that sparingly occur in the col-
lection while M02 balances both shorter units that occur frequently
and longer length units. We can therefore expect M01 to perform
better with long units (LU) derived by 30-40-30 partitioning of the
phoneme instances, and M02 to perform better with short units (SU)
up to 3-grams.

5. RESULTS

Phoneme classification performance for the proposed LPM approach
with variable length units is shown in Figure 3. Short units (SU
with 1-, 2- and 3-grams) are on the left and long units (LU with
30-40-30 partitioning) on the right, for different number of units
W . Direct DTW-based classification using complete phoneme seg-
ments on quantized sequences results in an average performance of
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Fig. 3. Proposed LPM classification performance.

58.2%. The baseline LPM approach (shown in black) is the orig-
inal LPM formulation [1] where only single-frame units (1-gram,
bag-of-frames) are considered and the number of units W equals the
codebook size N = 103. Its maximum performance is 55%. The
proposed approach using variable length short and long units reveals
interesting trends.

For the short units (SU), M02 ranking resulted in the best per-
formance and as the number of units considered (W ) increased,
the classification performance also increased. For both W = 103

and W = 104, the performance exceeded the performance of the
baseline LPM. Particularly for W = 104, the performance gain of
about 1-4% can be observed for all R. For this case, the maximum
performance is 58.4% which matches the direct DTW on complete
phoneme segments in spite of using relatively low number of units
(W � M ). For long units (LU), M01 ranking resulted in the best
performance. Interestingly, the performance for very low LPM di-
mensions (2 ≤ R ≤ 5) and small number of units W = 100, is up
to 47% with about 1-2% improvement for larger dimensions. As the
number of units increases, the performance for low dimensions de-
creases and the overall performance for larger LPM dimensions also
decreases. For both W = 103 and W = 104, the maximum per-
formance achieves the performance of the baseline LPM at higher
dimensions.

6. CONCLUSION

Through a data-driven derivation of prototypical acoustic units in
a latent space of low dimensionality, latent perceptual mapping al-
lows for a viable template-like recognition strategy where models
are closely aligned with perceived acoustic events. In this paper,
we have extended the original bag-of-frames formulation to a more
comprehensive bag-of-units framework which can take advantage
of data-driven variable-length acoustic units. This in turn enables
segment-level temporal information to be leveraged directly in LPM
feature extraction. It also casts the framework as a generalization
of other DTW-based methods that operate in the acoustic feature
space. Experimental evidence shows that the ensuing acoustic mod-
eling results in improved classification accuracy on the TIMIT task.
Our results also show an interesting interplay between the length of
the unit and the performance at a given dimensionality of the la-
tent space. By appropriate choice of length of unit and number of
units relatively high classification performance can be achieved in
low dimensional latent space. These findings support our premise
illustrated in Figure 2.

Future work will further refine our unit derivation approach.
While we have presented a ranking-based approach to control the
number of units, the clustering approach presented in [1] can also
be adopted. As we already use dynamic time warping for the unit-
document matrix appropriate temporal decoding procedures both
during training and recognition can also be incorporated. Further-
more, we would also like to explore divergence measures for simi-
larity computations [11] and further explore the parallels with sparse
representations [13] discussed in Section 3.
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