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ABSTRACT

This study proposes an effective feature compensation method
to improve speech recognition in real-life speech conditions,
where (i) severe background noise and channel distortion si-
multaneously exist, (ii) no development data is available, and
(iii) clean data for ASR training and the latent clean speech
in the test data are mismatched in the acoustic structure. The
proposed feature compensation method employs an online
GMM adaptation procedure which is based on MLLR, and
a minimum statistics replacement technique for non-speech
segments. The DARPA Tank corpus is used for performance
evaluation, which includes severe real-life noisy conditions.
The clean Broadcast News (BN) corpus is used for training
the speech recognition system in this study. Experimental
results show that the proposed feature compensation scheme
outperforms GMM-based FMLLR and the ETSI AFE for
DARPA Tank data, achieving a +5.56% relative improvement
compared to FMLLR. These results demonstrate that the pro-
posed feature compensation scheme is effective at improving
speech recognition performance in unknown real-life adverse
environments.

Index Terms— robust speech recognition, feature com-
pensation, GMM adaptation, minimum statistics replacement,
DARPA Tank corpus

1. INTRODUCTION

One of the primary factors degrading the performance of
speech recognition systems in actual environments is acous-
tic mismatch between training and operating conditions of
the speech recognizer. Background noise, microphone mis-
match, communication channel, and speaker variability are
major sources of such mismatch. Recently, as mobile devices
such as smart phones become more popular, speech recog-
nition technology via mobile platforms is more challenging,
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since a range of background noise and time-varying chan-
nel effects make recognition conditions more difficult. This
paper focuses on an effective feature compensation scheme
for robust speech recognition in unknown severely adverse
environments.

To minimize the acoustic mismatch, extensive research
has been conducted in recent decades, which includes many
types of speech/feature enhancement methods such as Spec-
tral Subtraction, Cepstral Mean Normalization (CMN), and
variety of feature compensation schemes [1]-[9]. Various
model adaptation techniques have been successfully em-
ployed such as the Maximum A Posteriori (MAP), Maximum
Likelihood Linear Regression (MLLR), and Parallel Model
Combination (PMC) [10]-[12]. Recently, missing-feature
methods have shown promising results [13]-[15].

As real-life conditions for speech recognition become
more adverse, the front-end technique is required to be more
effective in addressing unknown severely noisy environments.
In real-life environments, the speech signal is corrupted in a
more complicated way by coupling the background noise and
channel distortion effects. In addition, development data is
often unavailable, which can be used for model adaptation
that reflect the test condition, so an effective online adaptation
over the input speech is generally required. Some front-end
techniques have verified their effectiveness in a restricted
frame work condition1, where the clean training data and
the latent clean speech in the test data were obtained in an
identical recording condition and they share the same vocab-
ulary configuration. A series of our preliminary experiments
showed some of those front-end techniques were not effec-
tive when the acoustic structures of the clean speech used for
training and generating test data are mismatched.

In this paper, we propose an effective feature compensa-
tion method employing an online Gaussian Mixture Model
(GMM) adaptation. A noise-corrupted speech GMM is ob-
tained by the MLLR adaptation technique, and it is used for
clean speech reconstruction. Minimum statistics are deter-

1Clean speech samples are collected in an identical condition, and a part
of them are used as training data and others used for generating the noise-
corrupted test speech.
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mined during the input speech and then replaced with the non-
speech segments to further improve the reconstructed speech.
The proposed feature compensation method is evaluated over
the DARPA Tank corpus, using a speech recognizer trained
on the Broadcast News (BN) corpus [16] to observe the effec-
tiveness in a completely unknown acoustic environment. The
DARPA Tank data includes real-life severe adverse conditions
which make speech recognition highly challenging.

This paper is organized as follows. Sec. 2 presents de-
tails of the proposed feature compensation method includ-
ing the online GMM adaptation, clean speech reconstruction,
and minimum statistics replacement technique. Representa-
tive experimental procedures and their results are presented
and discussed in Sec. 3. Finally, in Sec. 4 we draw the main
conclusions of our work.

2. FEATURE COMPENSATION EMPLOYING
ONLINE GMM ADAPTATION

The proposed feature compensation method employs an on-
line GMM adaptation method over the noise-corrupted input
utterance. The noise-corrupted speech GMM is obtained via
adaptation and used for clean speech reconstruction. As an
initial stage, a K-component GMM representing the clean
speech signal x in the cepstral domain is estimated off-line
from the clean training data, which is given by,

p(x) =

K∑
k=1

ωkN (x;μk,Σk). (1)

2.1. Step 1: Online GMM adaptation

In the proposed method, the conventional MLLR adaptation
technique [11] is employed for online GMM adaptation over
the input speech. Here, MLLR adaptation for a GMM is
briefly described. Only the mean vectors are updated by
model adaptation in this study. The kth mean vector is as-
sumed to be transformed using the following equation,

μ̃k = Aμk + b, (2)

where A is a regression matrix and b is an additive bias term.
Eq. (2) can be extended by introducing an extended mean
vector mk = [1,μk

T ]T as follows:

m̃k = Wmk, (3)

where W = [b,A].
As is well known, the extended transform matrix W can

be obtained by equating the partial derivative to zero so as
to maximize the auxiliary function Q(λ, λ̃). The resulting
equation is as follows:

T∑
t=1

K∑
k=1

γk(t)Σ−1

k
y(t)mT

k
=

T∑
t=1

K∑
k=1

γk(t)Σ−1

k
Wmkm

T

k
,

(4)

where y(t) is the noise-corrupted input speech with a total
number of frames T , and γk(t) is the posterior probability
of being in the kth Gaussian component at time t. By trans-
forming the mean vector, a noise-corrupted speech GMM is
obtained as {ωk, μ̃k,Σk}.

2.2. Step 2: Clean speech reconstruction

In the proposed method, a constant bias transform of the mean
parameters of the speech model in the cepstral domain is as-
sumed under the noisy environment. This is the assumption
generally taken by other data-driven methods [17], and is rep-
resented as follows,

μ̃k = μk + rk. (5)

The bias term rk is used for clean speech reconstruction,
which is based on the Minimum Mean Squared Error (MMSE)
estimator as follows [9][17],

x̃(t) =

∫

X

xp(x|y(t))dx ∼= y(t) −
K∑

k=1

rk p(k|y(t)). (6)

It might be considered that the linear transform of Eq.
(2) for mean vector can be used for the clean speech recon-
struction, instead of using another assumption of the bias
transform as Eq. (5). However, Eq. (2) is obtained with
the criterion which maximizes the likelihood for the updated
(i.e., transformed) model parameters in the MLLR algorithm.
Therefore, to apply the transform matrix to the feature space
does not guarantee the maximum likelihood. Our proposed
method can be compared to the feature space MLLR (FM-
LLR) [18], where the input feature vector is transformed
instead of the model parameters. As such, the performance of
the proposed feature compensation method will be compared
to the FMLLR in Sec. 3.

2.3. Minimum statistics replacement for non-speech seg-
ments

We found that to replace non-speech segments with mini-
mum statistics consistently improves speech recognition per-
formance for severely noise-corrupted speech. The minimum
statistics are determined over the entire duration T of the
input speech in the log-spectral domain using the following
equation,

αn
{l} = min{y{l}

n
(1), y{l}

n
(2), . . . , y{l}

n
(T )}, (7)

where y
{l}
n (t) is the nth element of the log-spectrum y{l}(t),

which can be obtained by an inverse Discrete Cosine Trans-
form (DCT) of the cepstrum (i.e., y{l} = C−1y). The ob-
tained minimum statistics vector α

{l} is converted to the cep-
stral domain as Cα

{l}, and then replaced for frames which
are detected as non-speech segments in the cepstral domain.
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This study employs a simple non-speech detection method
utilizing single Gaussian models for speech and non-speech,
which are estimated from every input speech.

3. EXPERIMENTAL RESULTS

The Broadcast News (BN) speech corpus (F0: baseline broad-
cast speech and F1: spontaneous broadcast speech) [16] was
used for training the Hidden Markov Model (HMM) of the
speech recognizer. A total of 16.8 hours of speech were used,
which consists of 18049 utterances. The speech samples were
down-sampled to 8 kHz to be the same as the DARPA Tank
corpus which were used for performance evaluation in this
study. The SPHINX3 [19] was employed as our HMM based
speech recognizer, and each HMM represents a tri-phone
which consists of 3 states with an 8-component GMM per
state, which is tied with 4120 states. A conventional Mel-
Frequency Cepstral Coefficients (MFCC) feature front-end is
employed in the experiment, which was suggested by the Eu-
ropean Telecommunication Standards Institute (ETSI) [20].
An analysis window of 25 msec in duration is used with a 10
msec skip rate for 8 kHz speech data. The computed 23 Mel-
filterbank outputs are transformed to 13 cepstrum coefficients
including c0 (i.e., c0-c12). The first and second order time
derivatives are also added during decoding, so the feature
vector used for recognition is 39-dimensional.

Table 1 presents the performance evaluation over the
DARPA Tank corpus. The DARPA Tank data used in this
study includes 10 speakers’ conversations (2.5 hours with
1489 utterances) during military field training games in vari-
ous situations (tank, jeep, personnel carriers, etc.) using vehi-
cles and monitors outfitted with laser tag transmitter/receiver
technology. The data reflects various types of actual severe
background noise and communication channel effects. The
vocabulary consists of 1190 words and a trigram is adapted
on the DARPA Tank data transcription using a Broadcast
News language model as an initial model.

Here, the proposed system was also compared to the ex-
isting conventional front-end algorithms using the BN speech
recognition system. Spectral Subtraction (SS) [21] com-
bined with CMN was selected as one of the conventional
algorithms. This represents one of the most commonly used
techniques for additive noise suppression and removal of
channel distortion respectively. We also evaluated a fea-
ture compensation method, VTS (Vector Taylor Series) for
performance comparison, where the noisy speech GMM is
adaptively estimated using the EM algorithm over each test
utterance [17]. The Advanced Front-End (AFE) algorithm
developed by ETSI was also evaluated as one of the state-
of-the-art methods, which contains an iterative Wiener filter
and blind equalization [22]. Here, FMLLR [18] was also
compared, which was implemented as a GMM-based version
for a fair comparison to the proposed feature compensation
method.

Table 1. Recognition performance in WER (%) of the pro-
posed system for DARPA Tank data with relative improve-
ment to FMLLR.

WER (Relative)
No processing 82.27
SS + CMN 54.26
VTS + CMN 56.29
AFE + CMN 54.83
GMM-FMLLR + CMN 53.07
OGAFC + CMN 51.11 (+3.69)
OGAFC + CMN + MSR 50.12 (+5.56)

A series of experiments showed that a combination of a
target front-end system and CMN provides more performance
improvement in WER than employing either technique indi-
vidually. It is also noted that the HMM of the ASR system
was trained over the CMN-processed BN corpus, except for
the “No processing” and AFE+CMN cases. The ETSI AFE
showed the best performance when using the speech recog-
nizer trained over the AFE-processed training data, therefore
the ASR system for the AFE+CMN was trained over the
AFE+CMN processed BN corpus. A clean speech GMM
with 1024 components was obtained by training over the
same CMN-processed BN corpus, and used for the proposed
method and the GMM-based FMLLR.

For the DARPA Tank data, the GMM-based FMLLR
showed the best performance as 53.07% in WER among con-
ventional methods. The proposed system (OGAFC+CMN)
results in 51.11% and 50.12% without/with the minimum
statistics replacement technique, showing +3.69% and +5.56%
relative improvement respectively compared to FMLLR+CMN.
It can be seen that the proposed system achieves significantly
better performance compared to the ETSI AFE algorithm for
the DARPA Tank evaluation. The evaluation results shown in
Table 1 demonstrate that the proposed feature compensation
method is highly effective at improving speech recognition
performance in realistic conditions, where convolutional dis-
tortion and background noise are simultaneously present and
no a prior knowledge of the environments is available.

The plots in Fig. 1 present distributions of the 0th
MFCC component of the training data (BN) and test data
(DARPA Tank). Here it can be seen that the c0 distribution
of the DARPA data with the proposed OGAFC+CMN ap-
plied becomes more matched to the BN data compared with
the case of AFE+CMN. This result is also consistent with
speech recognition WER performance seen in Table 1, where
OGAFC+CMN outperforms AFE+CMN.

4. CONCLUSIONS

This study has proposed an effective feature compensation
method to improve speech recognition in unknown severely
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Fig. 1. Distributions of the 0th MFCC feature component
(i.e., c0) for BN and DARPA Tank data with (a) no pro-
cessing, and applying (b) AFE+CMN and (c) the proposed
OGAFC+CMN.

adverse environments. The proposed feature compensation
method employed an online GMM adaptation procedure
which was based on MLLR, and minimum statistics replace-
ment technique for non-speech segments. As a front-end
to speech recognition, the proposed method was evaluated
on the DARPA Tank database which includes severe real-
life noisy conditions. Experimental results showed that
the proposed feature compensation scheme outperformed
GMM-based FMLLR and ETSI AFE for the DARPA Tank
data. These results demonstrated that the proposed front-end
scheme is highly effective at improving speech recognition
performance in real-life speech recognition conditions, where
(i) severe background noise and channel distortion simulta-
neously exist, (ii) no development data is available, and (iii)
clean data for ASR training and the latent clean speech in the
test data are mismatched in the acoustic structure.
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