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ABSTRACT 
 

Background noise and channel degradations seriously constrain 
the performance of state-of-the-art speech recognition systems. 
Studies comparing human speech recognition performance with 
automatic speech recognition systems indicate that the human 
auditory system is highly robust against background noise and 
channel variabilities compared to automated systems. A traditional 
way to add robustness to a speech recognition system is to 
construct a robust feature set for the speech recognition model. In 
this work, we present an amplitude modulation feature derived 
from Teager’s nonlinear energy operator that is power normalized 
and cosine transformed to produce normalized modulation cepstral 
coefficient (NMCC) features. The proposed NMCC features are 
compared with respect to state-of-the-art noise-robust features in 
Aurora-2 and a renoised Wall Street Journal (WSJ) corpus. The 
WSJ word-recognition experiments were performed on both a 
clean and artificially renoised WSJ corpus using SRI’s DECIPHER 
large vocabulary speech recognition system. The experiments were 
performed under three train-test conditions: (a) matched, (b) 
mismatched, and (c) multi-conditioned. The Aurora-2 digit 
recognition task was performed using the standard HTK recognizer 
distributed with Aurora-2. Our results indicate that the proposed 
NMCC features demonstrated noise robustness in almost all the 
training-test conditions of renoised WSJ data and also improved 
digit recognition accuracies for Aurora-2 compared to the MFCCs 
and state-of-the-art noise-robust features 

Index Terms— Noise-Robust Speech Recognition, Large 
Vocabulary Speech Recognition, Modulation Features. 

 

1. INTRODUCTION 
 

Recent advances in LVCSR research have demonstrated high 
levels of recognition performance under clean or high signal-to-
noise ratios (SNRs). Unfortunately, these LVCSR systems suffer 
from environmental degradations stemming from background 
noises and/or channel degradations. 

Several approaches exist for realizing noise-robust automatic 
speech recognition (ASR) systems, such as 1) feature-space based, 
2) model-space based, and 3) missing feature theory based 
approaches. While the model-space and marginalization-based 
missing-feature approaches tend to adapt the acoustic model to 
reduce the mismatch between training and testing utterances, the 
feature-space approaches achieve the same by generating relatively 
cleaner features for the acoustic model. Such approaches can be 
grouped into two subcategories. In the first subcategory, the noisy 
speech signal is enhanced by reducing noise corruption (e.g., 
spectral subtraction [1], computational auditory scene analysis [2], 
and so on). In the second subcategory, noise-robust features are 
employed in ASR systems (e.g., ETSI [European Telecomm. 
Standards Institute] advanced [3] front end, power normalized 

cepstral coefficients [PNCCs] [4], fepstrum features [5], 
perceptually motivated minimum variance distortion-less response 
[PMVDR] features [6], etc. 

The most widely used mel-frequency log-energy based acoustic 
features (MFCCs) perform quite appreciably in clean matched 
conditions and have been used in several state-of-the-art ASR 
systems. Unfortunately, MFCCs are susceptible to frequency 
localized random perturbations, to which human perception is 
largely insensitive [7] and their performance degrades drastically 
in the presence of noise and channel degradations. This has led to a 
new quest for obtaining perceptually motivated noise robust 
acoustic features. 

Studies [8, 9] have shown that amplitude modulation (AM) of 
the speech signal plays an important role in speech perception and 
recognition. Hence, recent studies [5, 10] have treated the speech 
signal as a sum of amplitude-modulated, narrow-band signals. The 
Discrete Energy Separation Algorithm (DESA) proposed in [11] 
uses the nonlinear Teager-Kaiser Energy Operator (TKEO) to 
demodulate the AM/FM components of a narrow-band signal. 
TKEO has been used in [12] to create mel-cepstral features that 
demonstrated robustness against car noise and improved ASR 
performance. As shown in [10], for matched training and testing in 
clean conditions, performance of the TKEO-based features was 
similar to that of ASR as standard mel-cepstral features. A recent 
study [7] showed that TKEO-based cepstral features offered a 60% 
relative word error rate (WER) improvement over MFCCs for 
mismatched conditions in Aurora-3 speech recognition task. The 
nonlinear DESA tracks the instantaneous AM energies quite 
reliably [11], which in turn provide better formant information [12] 
compared to conventional power spectrum-based approaches. 

In this work, we present a perceptually motivated feature: 
Normalized Modulation Cepstral Coefficient (NMCC), that treats 
speech as a combination of AM/frequency modulation [FM] 
signals. We used DESA to transform speech into AM/FM 
components. The significance of DESA is twofold: (a) it doesn’t 
impose a linear model to analyze speech and (2) it tracks the 
frequency and amplitude variations at the sample level without 
imposing any stationary assumption as done by linear prediction or 
Fourier transform. For DESA to give good AM/FM estimates the 
input signal has to be sufficiently bandlimited [10]; for which we 
used a perceptually inspired gammatone filter-bank (with 
configuration as in [13]). The AM components obtained from 
DESA were normalized (similar to [4]) as it helps to reduce the 
mismatch between training and testing spectral representation [4] 
under noisy conditions. We used root compression on the 
normalized AM power spectrum as conventional log compression 
is known to be more susceptible to noise corruption [19]. The final 
NMCC feature set is obtained by taking Discrete Cosine 
Transform (DCT) of the root compressed AM power spectrum.  
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The proposed features were compared with traditional MFCC 
features and some state-of-the-art noise-robust features in two 
different word recognition tasks: (a) noisy digit recognition with 
Aurora-2 dataset and (b) renoised WSJ word recognition. For task 
(a) an Aurora-2 mismatched train-test setup was used, where the 
whole word models were trained with clean speech and were tested 
with noise and channel degraded speech. For task (b) the WSJ 
corpus was corrupted synthetically with the noise and channel 
degradations similar to those of the Linguistic Data Consortium 
(LDC) DARPA RATS (Robust Automatic Transcription of 
Speech) rebroadcast examples using the renoiser tool of the 
International Computer Science Institute (ICSI) and the University 
of Columbia [14]. For this task the word recognition experiments 
were performed in (a) matched (training and testing under similar 
conditions), (b) mismatched, and (c) multi-conditioned training 
setups. The proposed normalized modulation cepstral coefficient 
(NMCC) features were found to outperform the MFCCs and most 
state-of-the-art features used in our experiments. 
 

2. MODULATION FEATURES 
 

Teager [15] introduced a nonlinear energy operator, , that tracks 
the instantaneous energy of a signal, where he assumed that a 
signal’s energy is not only a function of its amplitude but also its 
frequency. Considering a discrete sinusoid x[n], where A = const. 
amplitude,  = digital frequency, f = frequency of oscillation in 
hertz, fs = sampling frequency in hertz, and  = initial phase angle.  

 (1) 
 

If  and sufficiently small, then  takes the form 
  (2) 
 

where, the maximum energy estimation error in  will be 23% if 
  , or  [11] used  to formulate the discrete 

energy separation algorithm (DESA) and showed that it can 
instantaneously separate the AM/FM components of a narrow-
band signal using  

  (3) 

   (4) 

Note that in (2)  can be less than zero if 
, while the right hand side is strictly 

non-negative,  , so we have modified (2) to 
              (5) 
which now tracks the magnitude of energy changes. Also, the 
AM/FM signals computed from (3) and (4) may contain 
discontinuities [16] (that substantially increases their dynamic 
range), for which traditionally median filters have been used. To 
prevent such discontinuities we have modified the AM estimation 
equation (4), as we are only interested in the AM signal.  

Let  be a windowed speech signal, after applying a time 
window . Let  be the AM time signal obtained from 
the DESA algorithm on the kth gamma-tone filter-bank time signal 
at the jth time window,  of the windowed speech sample 

. Let , then we can assume that 
         where   (6) 

 determines the deviation allowed in the AM time signal  
from the peak time signal amplitude, . Then (4) can be written 
as 

    (7) 

Equation (7) is imposing a hard upper bound on  by 
replacing the  outliers beyond the bound by the mean 
absolute magnitude of . Note that there still exist 
discontinuities at the time indexes of the outliers; to smooth out 
those discontinuities is low-pass filtered with a cut-off 
frequency  and then downsampled by M. In our experiments 
we have used and M = 4. Note that having  would 
result in retaining the peaky discontinuities while having  
will result in missing the proper peaks of the AM signal. Fig. 1 
shows the overlaying plot of the windowed narrow-band time 
signal and its corresponding AM magnitude.  

 
Fig. 1. A windowed narrow-band speech signal (in blue) and its 

corresponding AM signal (red) from the modified DESA algorithm. 
 

The steps involved in obtaining the NMCC features are shown in 
Fig. 2. At the onset, speech signal is pre-emphasized (using a pre-
emphasis filter of coefficient 0.97) and then analyzed using 25.6ms 
hamming window with 10ms frame rate. The windowed speech 
signal  is passed through a gamma-tone filter-bank having 40 
channels between 200Hz and 7500Hz. The distribution of the 
center frequencies and the configuration of the filter-banks are 
used as specified in [13]. The AM time signals  are then 
obtained for each of the 40 channels using the modified DESA 
algorithm. The total AM power of the windowed time signal for kth 
channel and jth frame is given as 
                  (8) 
Let  denote the 95th percentile power across all j and k, the 
AM power for the kth channel and jth frame is normalized using 
     (9) 
The normalized AM powers were then bias subtracted using a 
similar approach as specified in [4]. Fig. 3 shows the spectrogram 
of a noise corrupted signal (at SNR 15.6 dB), it’s normalized AM 
power spectrum and its corresponding bias subtracted version. 

 
Fig. 2. Flow-diagram of NMCC feature extraction from speech. 
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Fig. 3. Spectrogram of a renoised WSJ utterance corrupted with 15.6dB 

noise and Channel A characteristics (refer to Table 1) and it’s normalized  
& bias subtracted amplitude modulation spectrum 

 

1/15th root power compression was performed on the bias 
subtracted AM power spectrum and DCT was performed on the 
resultant. The first 13 coefficients were retained (including C0) and 
cepstral mean normalization was performed at the utterance level. 
These 13 coefficients along with their s and 2s resulted in a 39D 
NMCC feature set. 

 

3. DATA USED FOR ASR EXPERIMENTS 
The DARPA WSJ1 CSR dataset was used in the experiments 
presented in this paper. For training a set of 35990 speech 
utterances (77.8hrs) from the WSJ1 collection having 284 speakers 
was used. For testing the WSJ-eval94 dataset composed of 424 
waveforms (0.8hrs) from 20 speakers was used. The data was 
artificially corrupted with noise and channel distortions using Dan 
Ellis’s (Univ. of Columbia & ICSI) renoiser tool [14]. The renoiser 
tool estimates the noise/filter characteristics along with the SNR 
and frequency-shifts for the DARPA RATS Rebroadcast Example 
(RATS-RE) signals (LDC2011E20) and combines the same with 
the WSJ1 dataset. The renoiser filters each utterance with the filter 
characteristics that it has learnt from the RATS-RE and adds 
similarly estimated noise which is ‘laundered’ via LPC analysis-
synthesis over a 1.0 sec window, at the estimated SNR (that it has 
learnt from the RATS-RE). Eight different versions of the WSJ1 
train-test data were created with the renoiser tool corresponding to 
the eight channels specified in RATS-RE. The specifications for 
the RATS-RE data are shown in Table 1, where the SNRs and 
frequency shifts were estimated using the renoiser tool. 

We also used the digit-corpus of Aurora-2 [17] to perform digit 
recognition experiments in clean, noisy and channel-degraded 
conditions. Aurora-2 is created from the TIdigits corpus and 
consists of connected digits spoken by American English speaker. 
The speech data in Aurora-2 are sampled at 8 kHz and have three 
test sections: A, B and C. Test-set A and B each have four subparts 
representing four different noise types; hence A and B altogether 
eight different noise types. Section C involves two noise types 
borrowed each from sections A and B and have different channel 
(MIRS) than the training set 

 

Table 1. Channel specifications used in renoising WSJ1 

4. DESCRIPTION OF THE ASR SYSTEMS USED 
 

For the Aurora-2 experiments we used the HTK-based speech 
recognizer distributed with Aurora-2, which uses eleven whole 
word Hidden Markov Models (HMMs) with 16 states per word and 
three mixture components per state and two pause models for ‘sil’ 
and ‘sp’ with six mixture components per state. The ASR 
experiment was based on training on clean condition and testing on 
multi-SNR noisy data.  

For the renoised WSJ data, we used SRI’s DECIPHER LVCSR 
system, which uses a common acoustic front-end that computes 13 
MFCCs (including energy) and their s and 2s. The acoustic 
models were trained as cross-word, triphone HMMs with decision 
tree-based state clustering that resulted in 2048 fully tied states, 
and each state was modeled by a 32-component Gaussian mixture 
model, i.e. a total of 64K Gaussians for the entire acoustic model. 
The model uses three states (left-to-right) per phone. For the 
experiments presented in this work, all models were trained with 
maximum likelihood estimation. The system uses a bigram 
language model (LM) with 20K unigrams and 1 million 2-grams. 
There is a second pass decoding using  model space MLLR 
speaker adaptation with an average of 7 regression classes and a 
third pass with a 3-gram LM to re-score the lattices from the 
second pass. The 3-gram LM had 20k unigrams, 12 million 2-
grams and 20 million 3-grams. A detailed description of the ASR 
system is provided in [18].  
 

5. EXPERIMENTS AND RESULTS 
 

For Aurora-2 noisy digit recognition experiments we have used 
three different feature sets: (a) standard MFCCs (distributed with 
Aurora-2 database), (2) ETSI-2 [3] and (3) the proposed NMCCs. 
Please note, in all the experiments presented in this paper we have 
used the original feature generation source code shared with us by 
their authors/distributors. Table 2 shows the averaged word 
recognition accuracies for the three test sets of Aurora-2. In Table 
2 we can see that the proposed NMCC features performed better 
than ETSI-2 almost always above 5dB. The bolded numbers in the 
table represent the best recognition accuracy for that test category. 

For the renoised WSJ data, the proposed NMCC features were 
compared against MFCC (SRI’s MFCC implementation), PMVDR  
[6], PNCC [4], ETSI-2 [3] and modulation fepstrum features [5]. 
The WERs were obtained under three training-testing conditions: 
(1) Matched: Acoustic models were trained and tested under the 
same condition (i.e., if trained with clean data, then tested with 
clean data only); (2) Mismatched: Acoustic models were trained 
with clean data only and then evaluated under different conditions; 
(3) Multi-conditioned: Acoustic models were trained with the same 
training data size as from clean data and the eight channels 
(randomly selected, but channels were selected uniformly for each 
speaker) and then evaluated under the different testing conditions. 

The acoustic features were mean and variance normalized (at the 
speaker level) prior to training and testing the models. WERs were 
obtained under three conditions: (a) using a bigram LM, (b) maxim 
-um likelihood linear regression (MLLR) scoring, and (c) lattice- 

 

Table 2. Word recognition accuracies for Aurora-2 mismatched condition 
Set-a Set-b Set-c

MFCC ETSI2 NMCC MFCC ETSI2 NMCC MFCC ETSI2 NMCC
clean 99.00 99.09 99.12 99.00 99.09 99.12 99.00 99.06 99.03
20 dB 90.38 98.15 98.28 86.67 98.09 98.66 94.83 97.53 97.96
15 dB 75.29 96.93 97.07 69.44 96.48 97.76 88.66 95.55 96.50
10 dB 53.11 93.16 93.39 47.96 92.53 94.56 75.23 90.47 92.00
5 dB 32.15 84.36 80.89 28.35 82.05 83.20 50.85 78.60 79.07
0 dB 14.89 60.88 46.50 12.21 58.68 51.30 23.83 51.91 46.87

0-20dB 53.16 86.70 83.23 48.92 85.56 85.09 66.68 82.81 82.50

Channel Microphone SNR (dB) Frequency-shift (Hz)
A Motorola HT1250 15.6 0
B Midland GXT1050 6.0 0
C Midland GXT1050 6.2 0
D Galaxy DX2547 3.5 180.9
E Icom IC-F70D 0.9 0
F Trisquare TSX300 3.0 0
G Vostek LX-3000 18.7 0
H Magnum 1012 HT 3.0 120.7
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rescoring. Since lattice rescoring always gave the best result for all 
the features tested in our work, we report only the lattice rescoring 
result in this paper. Tables 3 through 5 show the WERs obtained 
from all the features used in our experiments in matched, 
mismatched, and multi-conditioned cases.  

Table 2 shows that the proposed NMCC features performed 
better than the ETSI-2 features for SNRs 5dB. On average, 
NMCCs improved word recognition accuracy by 0.4% and 22.3% 
relative to ESTI-2 and MFCCs. Table 5 shows that under the 
multi-conditioned case, NMCCs offered the best mean WER and 
gave the best WER for most channels. For matched and 
mismatched conditions, NMCCs were second best, offering best 
WERs for at least three out of eight channels. Note that for the 
mismatched condition, NMCCs gave the least WER for half of the 
renoised data. 
  

Table 3. WER for matched training-testing conditions 
MFCC PMVDR PNCC ETSI2 Fepstrum NMCC

Clean 6.7 6.4 6.9 7.8 6.7 6.8
A 15.5 17.2 14.9 16.9 15.5 14.6
B 30.3 31.4 30.8 30.5 29.9 29.5
C 30.5 31.0 30.8 30.0 28.7 28.8
D 38.4 33.1 36.0 29.8 30.3 35.3
E 60.3 53.3 56.2 52.2 53.7 52.5
F 48.5 46.3 44.8 49.4 38.9 43.0
G 9.7 9.8 9.6 10.1 9.3 9.1
H 35.4 34.0 32.9 29.5 29.2 32.3

mean 30.6 29.2 29.2 28.5 26.9 28.0
 

Table 4. WER for mismatched training-testing conditions 
MFCC PMVDR PNCC ETSI2 Fepstrum NMCC

Clean 6.7 6.4 6.9 7.8 6.7 6.8
A 23.0 28.4 18.0 26.1 32.5 18.6
B 51.7 59.2 46.4 52.7 59.0 47.7
C 51.7 58.7 45.2 53.7 57.5 45.1
D 70.0 76.4 72.5 72.5 69.9 75.7
E 86.6 86.6 83.4 84.4 86.9 79.2
F 75.3 76.7 67.9 80.2 71.9 66.9
G 12.7 13.0 11.2 12.9 13.3 10.9
H 70.4 74.1 60.8 65.5 66.1 64.8

mean 49.8 53.3 45.8 50.6 51.5 46.2
 

Table 5. WER for multi-conditioned training-testing conditions 
MFCC PMVDR PNCC ETSI2 Fepstrum NMCC

Clean 16.7 11.4 11.1 12.4 13.1 10.4
A 26.5 24.1 20.2 25.2 26.1 20.0
B 44.8 35.5 34.3 35.3 41.9 33.8
C 43.4 36.2 33.6 36.0 42.4 32.8
D 65.0 42.2 46.7 43.1 50.7 47.3
E 87.8 68.3 66.2 63.8 75.6 63.8
F 70.0 52.4 48.4 60.8 52.9 46.3
G 16.5 14.2 13.8 15.6 15.0 14.1
H 58.1 40.1 39.5 40.0 44.5 38.7

mean 47.6 36.0 34.9 36.9 40.2 34.1
 

6. CONCLUSION 
 

We have proposed an amplitude modulation based noise-robust 
feature for ASR. The proposed feature was found to outperform 
ETSI-2 features in Aurora-2 experiments and also provided best 
overall WER for multi-conditioned test cases of renoised WSJ 
data. For matched and mismatched conditions, it performed 
competitively and provided the least WER for almost half of the 
channels. The proposed features overall demonstrated sufficient 
noise robustness compared to state-of-the-art noise-robust features 
used in our experiments. Channels D and H overall showed higher 
WERs, which may be due to their frequency shift characteristics. 
Currently, NMCC does not have a way to deal with these 
frequency shifts, and future study should account for this in order 
to improve its performance in those cases.  
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