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ABSTRACT

Non-negative spectral factorisation has been used successfully for
separation of speech and noise in automatic speech recognition,
both in feature-enhancing front-ends and in direct classification.
In this work, we propose employing spectro-temporal 2D filters to
model dynamic properties of Mel-scale spectrogram patterns in ad-
dition to static magnitude features. The results are evaluated using
an exemplar-based sparse classifier on the CHiME noisy speech
database. After optimisation of static features and modelling of tem-
poral dynamics with derivative features, we achieve 87.4% average
score over SNRs from 9 to -6 dB, reducing the word error rate by
28.1% from our previous static-only features.

Index Terms— Automatic speech recognition, exemplar-based,
spectral factorisation, noise robustness

1. INTRODUCTION

In its current state, automatic speech recognition (ASR) can achieve
high phonetic classification quality in favourable conditions. How-
ever, the same cannot be said about noisy ASR. As the signal to noise
ratio decreases towards zero or below, a majority of spectral features
becomes corrupted, and traditional recognisers cannot match the ob-
servations to speech models reliably. Especially non-stationary noise
is problematic for recogniser back-ends and difficult to counter with
uniform compensation methods. Therefore detecting and removing
non-speech artifacts becomes essential for noise-robust ASR.
To compare different robust ASR methods, PASCAL CHiME

challenge was announced in 2010, and its results were gathered in
a workshop in September 2011 [1]. As the test data includes very
low SNRs, practically all challenge entries contained enhancement
or separation steps for extracting real speech features from the noisy
mixture [2]. Proposed approaches included beamforming, spatial
uncertainty-of-observation, statistical speech-noise models and in-
dependent component analysis. Separation algorithms can thus be
considered highly important for everyday ASR in general. What is
less clear is how to select the algorithms and features for the task.
One significant group of separation methods consists of spectral

factorisation. Due to the novelty of this branch, current work mostly
focuses on modelling static spectrogram features. Nevertheless, we
know that important characteristics of speech and noise can be found
in spectral dynamics, that is, local changes in spectro-temporal pat-
terns. In MFCC-based recognition, it has been found beneficial to
augment the base features with time derivatives, also known as delta
coefficients [3]. Another approach suggested for long temporal con-
text modelling is using TRAP features, where the emphasis is on
long term behaviour of a few spectral bands [4]. In our exemplar-
based framework, spectrogram windows spanning up to 300 ms can
capture a lot of temporal context [5], but some of the dynamic in-
formation is lost in the additive model. It has been suggested, that

dynamics can be emphasised in factorisation-based recognition by
including temporal and spectral derivatives in the feature vectors [6].
In this work, we inspect further the efficiency of derivative fea-

tures on top of optimised Mel magnitudes to improve the robust-
ness of factorisation-based recognition. The work is organised as
follows. First, we introduce in Section 2 our exemplar-based fac-
torisation framework and its recognition method known as sparse
classification (SC). Then we describe the concept of derivative fea-
tures in Section 3. The CHiME challenge data, our basic setup and
feature space experiments are described in Section 4, whereafter we
conclude in Section 5.

2. EXEMPLAR-BASED SPARSE CLASSIFICATION

While many separation methods are based on statistical speech and
noise models, in our approach we make the models more explicit by
representing the observed features as a combination of exemplars—
spectrogram segments sampled directly from the training material or
the local context [5].
Each exemplar in our system is a B × T spectrogram matrix

with B spectral bands and T consecutive frames. They are gathered
to a basis or dictionary, which is used to model observed speech and
noise features. Each observation window is represented as a linear
combination of basis atoms. If we reshape the observation matrix to
a vector y and each exemplar (basis atom) to a column vector ai, the
problem becomes finding the activation weight vector x so that

y ≈
mX

i=1

aixi (1)

where m is the number of exemplars in the basis. In matrix form
the same equation can be given as y ≈ Ax. Multiple observation
windows can be given as parallel column vectors to solve the total
activation matrixX (m × n) for n windows at once. Finally, by as-
suming that basis and observation features are non-negative spectral
magnitudes, and that activations should be non-negative too, finding
X becomes a non-negative matrix factorisation (NMF) problem for
a fixed basis. Enforcing additional sparsity on the solution ensures,
that a few best fitting matches are favoured over unrealistically com-
plex combination of multiple atoms. The iterative update rules used
to find the x estimates are presented in [5].
To determine the utterance content from activations, each exem-

plar has aQ×T label matrix, describing the likelihood of each state
q ∈ [1, Q] over the exemplar’s frames [1, T ]. Label matrices are
added together according to the corresponding exemplars’ activation
weights in temporal locations, where the activation was observed.
This produces a Q × Tutt likelihood matrix for the whole utterance,
which can be decoded using a standard Viterbi algorithm. The full
procedure is described in earlier work [5, 7].
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Figure 1: Spectro-temporal filters. Top row: ‘Medium’ length Ga-
bor filters for temporal, diagonal and spectral direction. Bottom row:
‘Short’ and ‘Long’ Gabor filters, and length 2 HTK delta filter. Mag-
nitudes are shown at a full greyscale range, thus not in scale.
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As the decoding is based on activation weights and exemplar la-
bels, there is no need to reconstruct the clean spectrogram or to syn-
thesise the waveform for an external back-end. Even though spec-
trum or signal enhancement are also possible, in earlier work we
have shown that direct classification performs better than the single-
stream alternatives [5]. Multi-stream methods can improve the re-
sults significantly [8], but in this work we only use SC for simplicity
and to eliminate the contribution of other components.

3. SPECTRO-TEMPORAL DERIVATIVE FEATURES

Current spectral factorisation algorithms are mostly employed in
plain magnitude spaces, which model the activity in spectrogram
bins, but not the dynamics over time and frequency. As in MFCC
time derivatives, the NMF base features can be augmented by dif-
ferential estimates. Because we are working in Mel spectrogram
domain, it is possible to observe changes not only in time, but in
any spectro-temporal direction by using 2-dimensional filters. The
concept is similar to edge detection algorithms in image processing.
First, we construct a filter matrix in the spectro-temporal space.

Then a derivative feature matrix is calculated by common 2-
dimensional convolutive filtering of the static features, revealing
the on- and offsets of spectrogram patterns. However, it should
be noted that the differential estimates can have any sign, unlike
the original non-negative magnitudes. To stay in the non-negative
domain required by standard NMF algorithms, we must modify the
features before factorisation.
The derivative feature matrix is reshaped to a vector, and repre-

sented by two vectors of the same size. The first contains the positive
coefficients, and zeros where the vector was negative. Similarly, the
second vector contains the absolute values of negative coefficients.
If we denote the static features by a row vector f and its derivative
by df , the augmented feature vector becomes

f̂ = [f , df
+

, df
−] = [f , max(df ,0), max(−df ,0)]. (2)

If multiple derivatives are used, they are concatenated further to the
vector as +/- pairs. Similar implementation was used in [6].
To learn the directions helpful for phonetic classification, we ex-

perimented with real-valued Gabor filters for multiple directions and
sizes. Examples of filter matrices are shown in Figure 1, and they
are described in more detail in Section 4.4.

4. EVALUATION

4.1. CHiME challenge data

The experiments were conducted using the PASCAL CHiME chal-
lenge database [1]. Its speech data consists of GRID corpus sen-
tences, which follow a linear grammar of six word classes. The task
is to recognise words belonging to the ‘letter’ and ‘digit’ classes,
which contain 25 and 10 word options, respectively.
CHiME utterances are convolved with room response patterns,

and mixed with household noises at six SNRs ranging from +9 to
-6 dB. For training, there are 500 reverberated utterances for each
of the 34 speakers, and six hours of plain background noise. The
development and test sets consist of 600 utterances each, distributed
between all speakers. Each set is repeated for all SNRs by mixing
the utterances with different background segments containing an ap-
propriate level of noise. All noisy utterances are presented within
a long noise context as ‘embedded’ wave files. The development
utterances are also available as ‘clean’ files with reverberation but
no additive noise. Speaker identity is assumed to be known during
recognition, while the target SNR is not.

4.2. Base setup

Our exemplar-based setup generally follows the one described in [7].
To reduce the number of parameters, we only use exemplar length
of 20 frames (25 ms frame length, 10 ms shift), speaker-dependent
speech bases and adaptively sampled noise bases in this work. The
previous results for this setup and the GMM-based CHiME chal-
lenge baseline recogniser can be found in Table 3.
For each speaker, a speech basis is constructed by sampling 5000

exemplars from the ‘clean’ training speech semi-randomly. 5000
noise exemplars are also extracted for each test utterance by sam-
pling the ‘embedded’ waveform files to both directions from the tar-
get utterance. In clean speech recognition, the noise basis is omitted.
After converting all exemplars to Mel magnitudes and merging the
speech and noise bases, a band weighting function is applied to de-
fine the contribution of each spectral band. Thereafter individual
basis vectors are normalised to a Euclidean norm of 1.
Each test utterance is similarly converted into Mel magnitudes

by extracting overlapping windows with a step of one frame. The
band weights determined for the basis are applied to the observa-
tion as well. The observation windows are factorised to find out the
activation vectors x as described in section 2. We initialise the ac-
tivations to ones, and apply 300 rounds of an iterative update rule.
The algorithm minimises the sum of estimation error (defined by
KL-divergence) and a weighted L1 penalty for non-zero activations.
As in earlier work, we used base sparsity values of 2.0 for speech

and 1.7 for noise activations. However, the final sparsifying effect
depends on the ratio between the penalty values and the 1-norms of
basis vectors. The latter will increase by a factor of

√
R, if the length

of 2-normed feature vectors is multiplied by R and their distribution
remains similar. Therefore the

√
R scaling is applied to the previ-

ously determined sparsity values, whenever the channel count, band
number or derivative features change the feature vector length.
To avoid optimising for the test set, all parameter scans were

performed on the development set. The ‘clean’ set was also used,
although it does not belong to the final test set and is not included
in any average values. The feature extractor was modified to use
512 FFT bins instead of the previous 256, producing small initial
improvements over the earlier extraction. No changes were made
to basis selection, factorisation or decoding algorithms. The learnt
state mappings presented in [7] were not used in this work.
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Figure 2: Mel band weighting curves for no adjustment (‘flat’), on-
line normalisation of the combined basis (‘utt-c’), online speech ba-
sis normalisation (‘utt-s’), precalculated normalisation from training
speech (‘pre-s’) and bandpass filtering (‘bandp’).

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

band

w
ei

gh
t

 

 
flat
utt−c
utt−s
pre−s
bandp

4.3. Spectral band parameters

Before moving on to derivative features, we reoptimised the under-
lying static spectral magnitude space. In earlier work, we used 26
spectral bands calculated from 16 kHz signals as in the provided
CHiME recogniser. The features were extracted separately for both
channels, and the channel feature vectors were concatenated. These
choices were re-evaluated as follows.

4.3.1. Band weighting

The Mel-scale distribution of speech and noise features is consider-
ably uneven across bands. We can reweight the bands for two differ-
ent goals; either to flatten the distribution for equal contribution of
each band, or alternatively to emphasise certain bands for maximal
classification quality. While the highpass filter commonly employed
in MFCC extraction can improve clean speech recognition, we have
found it too drastic for robust factorisation algorithms. Instead, five
different weighting methods were tested:

1. No weighting (‘flat’)
2. Normalisation of the combined utterance basis bands (‘utt-c’)
3. Normalisation calculated from the speech basis only (‘utt-s’)
4. Precalculated normalisation of training speech bands (‘pre-s’)
5. Experimental bandpass filtering (‘bandp’)

Method 2 is our previous approach and depends on the adaptive
noise basis of each utterance. Method 3 only depends on the cur-
rent speech basis, that is, speaker identity. Methods 4 and 5 both
produce fixed weighting, which simplifies the later steps. The band-
pass weighting was included as an example of filter types, which
emphasise the speech formant area and mostly discard frequencies
over 4 kHz. All weighting methods are illustrated in Figure 2. For
non-fixed weightings, means over all development data are shown.
The results are summarised in the first part of Table 1. We ob-

serve that ‘do nothing’ and online-computed speech weighting fare
worse at certain SNRs than the other methods, which are approxi-
mately tied. Interestingly, the fixed weightings produce similar av-
erage rates, while bandpass filtering favour the clean end and precal-
culated speech normalisation the noisy one. The latter was chosen
for further experiments due to its robustness, normalising effect and
fixed shape. The differences between diverse weighting methods
were generally small.

Table 1: Development set results for different spectral band parame-
ter combinations. The format of experiment names is [band number]
/ [mono | stereo] / [weighting type].

SNR (dB) clean 9 6 3 0 -3 -6 avg

26/s/flat 92.7 90.6 90.5 88.3 83.5 79.1 71.8 84.0
26/s/utt-c 93.7 91.8 91.8 89.8 83.5 78.5 72.2 84.6
26/s/utt-s 93.7 92.0 91.6 89.3 83.3 77.4 70.4 84.0
26/s/pre-s 93.6 91.4 90.8 89.3 84.7 78.9 72.7 84.6
26/s/bandp 93.7 92.0 91.7 89.8 83.8 78.8 71.8 84.6

26/m/pre-s 93.3 92.1 91.4 89.3 83.9 78.7 71.9 84.5
26/m/bandp 93.7 91.8 91.7 89.6 83.8 79.5 71.6 84.7

40/m/pre-s 93.6 92.3 91.6 89.8 85.0 79.7 72.7 85.2

4.3.2. Channel count

In our original parametrisation, binaural features were kept in sep-
arate entries of the feature vector, retaining some of the spatial in-
formation of the sound sources. To study whether it plays any role
in recognition quality, the development set was also factorised using
mono features by averaging the Mel magnitudes of channels. Apart
from adjusting the sparsity value due to vector length halving, no
other changes were made. Two fixed weighting curves, precalcu-
lated normalisation and bandpass filtering, were tested.
As can be seen from the results in Table 1 (rows 4–7), the ac-

curacy of mono and stereo features is highly similar. Because mono
features reduce the vector length and consequently computing costs
by a half, they were used for further experiments.

4.3.3. Spectral band number

One fundamental question regarding feature selection is the num-
ber of Mel bands. To inspect this briefly, the band count was in-
creased from 26 to 40. The results are shown on the last row of
Table 1. We observe some ∼1% improvements and no decrements,
suggesting that the gains may be worth the increased computational
costs. While the next section was still evaluated using the original
26 bands, the final evaluation was performed on both values.

4.4. Spectro-temporal filters

After determining efficient base features, we tested three combina-
tions of spectro-temporal Gabor filters: only temporal (forward and
backwards), cardinal directions (temporal and spectral), and diago-
nal filters (45◦ angles). The prototype filter matrix was defined by

g(x, y) = exp(−(
x2 + (γy)2

2σ2
) sin(

2πx

λ
), x, y ∈ [−5, 5] (3)

with ellipticity γ set to 3, Gaussian envelope width factor σ to 2, and
wavelength λ to 9, producing approximately one full sinusoid cycle.
The prototype filter and two of its rotations are shown on the first row
of Figure 1. The absolute sum of filter coefficients was set to 0.6 for
each half of the filter. The results of augmenting directional filters
to fixed-norm weighted mono features can be seen in the first part of
Table 2. We notice that temporal direction improves the recognition
rates, while including any of the spectral directions does not.
Settling for primarily temporal filtering, we tested the Gabor fil-

ter with its size increased and decreased by 50%, and in addition
the delta filter employed by HTK using the default window length
of 2 frames to both directions [3]. All were normalised to a 0.6
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Table 2: Development set results for 2D filtering. Filter type is either
Gabor [short | medium | long] in [temporal | cardinal | diagonal ]
directions, or HTK delta.

SNR (dB) clean 9 6 3 0 -3 -6 avg

G/med/temp 92.8 92.0 91.7 89.5 83.9 80.3 73.2 85.1
G/med/card 92.9 91.8 90.3 89.3 83.8 78.1 71.7 84.1
G/med/diag 92.8 91.1 90.6 88.3 82.7 76.3 69.5 83.1

G/short/temp 93.3 92.2 92.2 90.3 85.6 81.4 73.5 85.9
G/long/temp 92.3 91.0 89.8 88.3 82.2 77.4 70.5 83.2
HTK delta 93.4 92.4 91.8 90.3 85.1 82.1 74.1 86.0

coefficient sum per side. The filters are shown on row 2 of Figure
1, and the results in the second part of Table 2. The best results
were achieved using the shorter filters with little or no cross-band
bleeding. The clean speech recognition rate does not improve over
unfiltered base features, but the robustness against heavy noise in-
creases. Changing the filter weight (not shown) did not produce any
significant improvements.

4.5. Final test set evaluation

After optimisations, the test set was evaluated using the follow-
ing parameter combination; mono features, precalculated speech-
normalising band weights, and length 2 temporal delta filtering at
weight 0.6. Both 26 and 40 spectral bands were used for determin-
ing their quality-cost tradeoff. The results are listed in Table 3. We
notice significant improvements at each SNR in comparison to our
earlier results. The word error rate is reduced by 13.9–32.8% at
different SNRs, and the total error rate by up to 28.1%. Using 40
bands produces a large boost at -6 dB and modest gains elsewhere.
While the overall rates do not match the state-of-the-art results

achieved in the CHiME workshop, where the best average score
was 91.65% [9], it should be noted that the current highest rank-
ing methods are relatively complex combinations of multiple tech-
niques, whereas the approach presented here is a single stream clas-
sifier. Preliminary experiments suggests, that using sparse classifi-
cation with complementary methods in multi-stream recognition can
indeed achieve over 90% average recognition rate on the CHiME
data already with the earlier, unoptimised features [8].

5. CONCLUSIONS

We studied alternative parametrisations of Mel features and their
derivatives for factorisation-based speech recognition using CHiME
challenge data and an exemplar-based sparse classifier.
First, we found out that the recognition algorithm is not particu-

larly sensitive to band weighting, although some normalisation will
improve the results over do-nothing. Mono features were found as
effective as stereo for this data, allowing a 50% reduction in compu-
tational costs. Increasing the spectral band number from original 26
to 40 improved the results slightly.
Spectro-temporal filters were applied to the basis and observa-

tion features to model dynamic behaviour. Including temporal delta
information produced significant improvements, while edge detec-
tion in spectral directions was found detrimental. The best temporal
filters were relatively short with roughly 20ms temporal context to
both directions, and no cross-band bleeding.
All in all, our feature space optimisation yielded 28.1% reduc-

tion in the total word error rate over all noisy conditions. Clean
speech recognition rate remained at approximately 93–94%, which

Table 3: Test set scores (%) for the CHiME baseline GMM recog-
niser, our previous SC features, and optimised features with their
relative word error rate reductions (%) from the earlier results.

SNR (dB) 9 6 3 0 -3 -6 avg

GMM baseline 82.4 75.0 62.9 49.5 35.4 30.3 55.9
original SC, B=26 91.6 89.2 87.6 84.2 74.7 68.0 82.5

optimised SC, B=26 92.8 91.3 89.8 87.9 82.2 75.8 86.6
WER reduction 13.9 19.9 17.5 23.7 29.6 24.5 23.4

optimised SC, B=40 92.9 91.8 90.1 88.4 82.9 78.5 87.4
WER reduction 15.9 24.6 20.1 26.8 32.6 32.8 28.1

illustrates the difficulty of short word classification when no clues of
word identity can be found from the neighbouring word context.
While the presented work was tested on the exemplar-based

recogniser, it can be generalised to other algorithms based on non-
negative spectral factorisation. The improved separation quality
should prove useful both for feature-enhancing front-ends and for
direct classifiers in standalone or combined recognition.
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