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ABSTRACT

One of the most effective approaches to noise robust speech recog-
nition is to remove the noise effect directly from corrupted MFCC
vectors. However, VTS enhancement, which is a typical method
for performing MFCC enhancement, provides limited improvement
when the noise is highly non-stationary. This is because the VTS
enhancement method cannot use a time-varying noise model to keep
the computational cost at an acceptable level. This paper proposes a
method that can enhance MFCC vectors and their dynamic parame-
ters by using noise estimates that change on a frame-by-frame basis
at a practical computational cost. The proposed method employs
stereo data-based feature mapping like the well known SPLICE al-
gorithm. The novelty of the proposed method lies in that it uses
the joint space spanned by a concatenated vector of corrupted and
noise features. It is also proposed to use linear discriminant analy-
sis to effectively reduce the dimensionality of the joint space. The
proposed method achieves 19.1% and 8.3% relative error reduction
from the SPLICE and noise-mean normalized SPLICE algorithms,
respectively.

Index Terms— Noise robust ASR, non-stationary noise, SPLICE

1. INTRODUCTION

Automatic speech recognition performance drops sharply in noisy
environments due to a mismatch between the acoustic model of a
recognizer and input features corrupted by acoustic environmental
noise. A variety of solutions to this problem have been proposed,
including feature enhancement and acoustic model adaptation.

One common drawback of many existing noise-robust algo-
rithms is their inefficiency in highly non-stationary noise environ-
ments. Many algorithms explicitly or implicitly employ a fixed
noise model by assuming stationary or slowly changing noise envi-
ronments. For example, vector Taylor series (VTS) approximation-
based algorithms, which can be used for both feature enhancement
[1] and model adaptation [2, 3], usually employ a single Gaussian
noise model so that those algorithms can be carried out at a practical
computational cost. However, the fixed noise model assumption
makes those algorithms ineffective in highly non-stationary noise
environments.

One way of exploiting temporally changing noise estimates is
to operate on log mel spectra instead of mel frequency ceptral co-
efficients (MFCCs). For instance, the algorithms proposed in [4, 5]
attempt to estimate clean log mel spectra given their noisy versions.
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However, the speech recognition accuracy obtained with log mel
spectrum enhancement is generally significantly lower than that ob-
tained with MFCC enhancement.

With this as a background, this paper proposes a method that
can directly enhance corrupted MFCCs and their dynamic parame-
ters by using noise estimates that change on a frame-by-frame basis
at a low computational cost. The proposed method is an extension
of the well-known SPLICE algorithm [6]. The original SPLICE al-
gorithm divides a corrupted feature space into a number of disjoint
regions by using a Gaussian mixture model (GMM) of corrupted fea-
tures. For each region, a linear mapping function from a corrupted
feature to a clean feature is estimated in advance. Given a vector of
corrupted MFCCs, SPLICE first finds the region that the observed
MFCC vector belongs to (space division step) and then enhances the
corrupted MFCC vector by using the mapping function associated
with the selected region (feature mapping step). Unlike the original
SPLICE algorithm, the proposed method uses a joint vector compris-
ing corrupted and noise MFCCs to perform both space division and
feature mapping. In addition, we propose to perform dimensional-
ity reduction of the space where the joint vector is distributed based
on linear discriminant analysis (LDA). The proposed method outper-
formed both noise mean normalized- (NMN-) SPLICE and the VTS
feature enhancement algorithm on the Aurora2 task.

The rest of this paper is organized as follows. In Section 2, we
review SPLICE. In Section 3, we explain our proposed method. In
Section 4, the proposed method is evaluated on the Aurora2 task. In
Section 5, our conclusion is presented.

2. REVIEW OF SPLICE

SPLICE is a method for estimating a clean MFCC vector x from its
noisy version y, where both x and y are composed of static MFCCs
and their dynamic parameters. We denote the dimension of x and y
as N .

SPLICE employs piecewise linear transformation to model a
mapping from a corrupted feature to a clean feature. With the origi-
nal version of SPLICE, we obtain an estimate x̂ of the clean feature
x according to the following formula:

x̂ =

KX

k=1

p(k|y)Aky′, (1)

where y′ is an augmented feature vector given by y′ = [1 yT ]T . Ak

is an N × (N + 1) matrix trained in advance. p(k|y) is calculated
by using a GMM of corrupted features. K is the size of the GMM.
This process performed by SPLICE is illustrated in Fig. 1.
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Fig. 1. Illustration of SPLICE transformation from noisy speech fea-
tures y to estimated clean speech features x̂. k is a region indicator.

Note that calculation of p(k|y) corresponds to the space division
step of SPLICE while calculation of Aky′ is the feature mapping
step. This can be easily understood if we consider forcing the largest
posterior probability to be one and the other posterior probabilities
to be zero.

2.1. Training of SPLICE parameters

Before using SPLICE, we need to train the parameters of the cor-
rupted feature GMM p(y) =

PK
k=1 p(k)p(y|k) and the set of lin-

ear transformation matrices {Ak}K
k=1. For this purpose, we use

time synchronized feature vector (static and dynamic MFCC) se-
quences of clean speech X = [x1x2 · · ·xI ] and noisy speech Y =
[y1y2 · · ·yI ]. Here, I is the total number of feature vectors con-
tained in the training data set. This kind of stereo data can be pre-
pared by recording clean speech and noise separately and mixing
them artificially on a computer.

First, we train a K-component GMM of corrupted features by
using Y . We estimate the weight p(k), mean vector μy

k , and co-
variance matrix Σy

k for each k value. Here, we assume Σy
k to be

diagonal. Using these parameters, we can calculate p(k|y) as

p(k|y) =
p(y|k)p(k)

PK
k=1 p(y|k)p(k)

, (2)

where p(y|k) = N (y; μy
k ,Σy

k ).

Next, we estimate the N × (N + 1) matrix Ak for each k. In
this paper, we use a weighted minimum mean square error criterion
to estimate the value of Ak . Specifically, the optimal linear transfor-
mation matrix is given by

Ak = argmin
Ak

IX

i=1

p(k|yi)||xi − Aky′
i||2, (3)

where y′
i is an augmented feature vector [1 yT

i ]T . We can analyti-
cally obtain the optimal linear transformation matrix as

Ak = XP Y ′T (Y ′P Y ′T )−1. (4)

Y ′ is the sequence of augmented feature vectors given by [1 yT
i ]T .

P is a diagonal matrix, which has [p(k|y1), p(k|y2), · · · p(k|yI)]
as its diagonal elements [7].

2.2. Noise mean normalization

The problem of SPLICE is that it provides limited improvement
when training and test environments are different or the training en-
vironment is non-stationary. This is because SPLICE uses only cor-
rupted features to perform space division in spite of the fact that the
feature mapping function should essentially be selected depending
on a signal-to-noise ratio. Performing space division by using only
the corrupted features mixes up the variabilities of speech and noise,
which precludes selection of an appropriate feature mapping func-
tion.

To mitigate this degradation, a heuristic solution, called NMN-
SPLICE, was proposed [6]. NMN-SPLICE uses the following for-
mula to obtain a clean feature estimate x̂:

x̂ =

KX

k=1

p(k|y − n̂)Ak(y − n̂)′, (5)

where n̂ is an estimate of a noise feature. The difference between the
original and NMN-SPLICE algorithms is that NMN-SPLICE uses
y − n̂ instead of y for space division and feature mapping. The use
of y − n̂ is known to remove the effect of noise variability to some
extent from the variability of corrupted features, thereby leading to
a higher speech recognition accuracy.

However, it is a bit unclear why the use of y− n̂ can provide the
improved recognition accuracy. Perhaps there can be a vector that is
calculated based on y and n̂ and leads to an even higher recognition
accuracy. With this motivation, we seek an answer to the following
question: “Is there an alternative vector that leads to a higher recog-
nition accuracy than y − n̂?” The proposed method is derived in an
effort to answer this question.

3. PROPOSED METHOD

There are two key ideas behind the proposed method: (1) the use of
the joint space of corrupted and noise features and (2) LDA-based
dimensionality reduction for this joint space. Before describing the
algorithm of the proposed method, we explain these two ideas by
taking a close look at the original and NMN-SPLICE algorithms.

The first idea is to modify the original SPLICE algorithm so
that it uses the joint vector [yT n̂T ]T , comprising a corrupted fea-
ture vector y and a noise feature vector estimate n̂, instead of the
corrupted feature vector y alone. The use of the joint vector means
that we take both y and n̂ into account for space division and fea-
ture mapping. Therefore, the joint vector approach basically enables
us to discriminate the variability of noise features from that of clean
features.

However, we cannot gain significant recognition accuracy im-
provement when we simply replace the corrupted feature vector by
the joint feature vector in the SPLICE algorithm due to the high cor-
relation between y and n̂ in the low SNR region, where y � n.
Therefore, it is necessary to reduce the dimension of the joint fea-
ture space.

With the above discussion in mind, let us look into NMN-
SPLICE, which uses the difference, y − n̂, between the corrupted
and noise features. Since y−n̂ is obtained by multiplying [yT n̂T ]T

by [I ,−I ] from the left, we find that the space where y − n̂ is dis-
tributed is the complementary orthogonal subspace of the subspace
satisfying y = n̂. Therefore, the question we raised at the end of
Section 2 is now rephrased as follows: “Is there an alternative sub-
space that provides a higher recognition accuracy than the subspace
of y − n̂?”
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At this point, the second idea, or LDA-based dimensionality
reduction, comes into play. We attempt to find an appropriate di-
mensionality reduction matrix L, which is applied to the joint vec-
tor [yT n̂T ]T , based on a set of training data {[yT

i n̂T
i ]T }i=1,··· ,I .

For this purpose, we need to define the cost function for optimizing
matrix L. In this paper, we propose to employ LDA, using an in-
dex of a clean feature GMM as a class label. Specifically, we first
obtain a GMM of clean features p(x) = p(m)p(x|m) and calcu-
late p(m|xi) for each clean feature vector xi. In this way, we ob-
tain a probabilistic class label p(m|xi) for each joint feature vector
[yT

i n̂T
i ]T contained in the training data set. Then, given the training

data set, we calculate the dimensionality reduction matrix L based
on LDA. After obtaining the dimensionality reduction matrix L, we
use v = L[yT n̂T ]T in place of y in the SPLICE algorithm.

The important idea presented above is the use of a clean feature
GMM index as a class label. This idea is quite natural when we
recall that the aim of feature enhancement is to obtain estimates of
clean features. We see that the proposed method outperformed NMN
SPLICE in Section 4, experimentally. Therefore, we can positively
answer the question raised in Section 2.

In summary, the proposed method uses the following formula to
obtain a clean feature estimate x̂:

x̂ =

KX

k=1

p(k|v)Ak[1 yT n̂T ]T . (6)

Note that, in (6), we use the joint vector [yT n̂T ]T instead of v
for the feature mapping step because it led to slightly better speech
recognition performance in our preliminary experiments. In Sec-
tion 3.1, we elaborate on the space division step, i.e., calculation of
p(k|v). Then in Section 3.2, we provide a detailed description of the
feature mapping step, i.e., calculation of Ak[1 yT n̂T ]T .

As regards noise estimation, our current implementation uses
the method proposed in [8] to estimate noise features. This method
estimates log mel frequency spectra of noise and was shown to pro-
vide good noise estimates even in highly non-stationary noise en-
vironments. We use static and dynamic MFCCs derived from the
estimated noise log mel frequency spectra.

3.1. Space division step

We propose to use LDA to perform dimensionality reduction of the
space of [yT n̂T ]T by using p(m|x) as a probabilistic class label.
We note that the within-class covariance matrix for multi-class LDA
is defined as the sum of covariance matrices weighted by p(m|x)
because p(m|x) is not a binary value.

As a training data set for the proposed method, we need
time synchronized feature vector (static and dynamic MFCCs)
sequences of clean speech X = [x1x2 · · ·xI ], noisy speech

Y = [y1y2 · · ·yI ], and estimated noise N̂ = [n̂1n̂2 · · · n̂I ].
First, we train an M -component GMM of clean features using

X . We estimate the weight p(m), mean vector μx
m, and covariance

matrix Σx
m of the m-th mixture component. Using these parameters,

we can calculate p(m|x) as

p(m|x) =
p(x|m)p(m)

PM
m=1 p(x|m)p(m)

, (7)

where p(x|m) = N (x; μx
m,Σx

m).
Next, we estimate LDA-based dimensionality reduction matrix

L by using a set of the joint vectors {[yT
i n̂T

i ]}T
i=1,...I and its cor-

responding labels {p(m|xi)}i=1,...,I calculated by the clean feature
GMM.

Then, we train a K-component GMM of feature vectors, v =
L[yT n̂T ]T , obtained after performing the LDA-based dimensional-
ity reduction. We estimate the weight p(k), mean vector μv

k , and
covariance matrix Σv

k of the k-th mixture component. Using these
parameters, we can calculate p(k|v) as

p(k|v) =
p(v|k)p(k)

PK
k=1 p(v|k)p(k)

, (8)

where p(v|k) = N (v; μv
k ,Σv

k).
It should be noted that when L = [I ,−I ], v becomes y−n̂ and

therefore the proposed space division step reduces to that of NMN-
SPLICE.

3.2. Feature mapping step

The feature mapping step of the proposed method is obtained by
substituting [1 yT n̂T ]T for y′ = [1 yT ]T in SPLICE. Accordingly,
the size of matrix Ak becomes N × (2N + 1).

We estimate Ak by

Ak = argmin
Ak

IX

i=1

p(k|vi)||xi − Ak[1 yT
i n̂T

i ]T ||2. (9)

We can analytically obtain the optimal linear transformation matrix
as

Ak = XP [Y ′T NT ]([Y ′T NT ]T P [Y ′T NT ])−1. (10)

Y ′ is the sequence of augmented feature vectors given by [1 yT
i ]T .

P is a diagonal matrix, which has [p(k|v1), p(k|v2), · · · p(k|vI ] as
its diagonal elements.

Note that our proposed feature mapping step is a generalization
of that of NMN-SPLICE. To see this, let us denote the submatrices
of Ak corresponding to y and n̂ by Ay

k and An̂
k , respectively. Then,

we can see that forcing Ay
k to be equal to −An̂

k makes the proposed
feature mapping step equivalent to the NMN-SPLICE’s feature map-
ping step. In the same way, we can easily find that using [1 vT ]T

for feature mapping is a spacial case of the proposed feature map-
ping method. Therefore, when we have enough training data, the
use of joint feature vectors for feature mapping is expected to yield
the highest recognition accuracy. (This fact was confirmed in our
preliminary experiments.)

4. EXPERIMENTS

The proposed feature enhancement method was evaluated on the Au-
rora2 task, that is widely used for evaluation of noise-robustness
techniques [9]. In this experiment, we used a clean acoustic model
trained according to the complex back-end recipe of Aurora2. As
a feature vector for speech recognition, we used a 39-dimensional
vector consisting of 13 MFCCs (including C0) and their velocity
and acceleration parameters. This means that the dimension of the
joint feature vector [yT , n̂T ]T is 78. As described in the previous
section, the proposed method compresses the joint vector space by
using LDA. We set the subspace dimension at 39 to compare the
proposed method with NMN-SPLICE in a fair manner. The sizes,
K and M , of the GMMs needed for enhancement were set to 1024.
In order to train the parameters of the proposed method, we used the
multi-style training data set.

We limited our test sets to Aurora2 test sets A and B, where the
same convolutive distortion is present as in the multi-style training
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Table 1. Summary of word accuracies for SPLICE.

Set A N1 N2 N3 N4 Avg.

SNR20 99.20 99.43 99.37 99.07 99.27
SNR15 98.43 98.73 98.66 98.15 98.49
SNR10 96.56 97.16 96.39 95.77 96.47
SNR5 90.39 87.61 87.98 87.57 88.39
SNR0 71.91 57.41 59.29 66.40 63.75

Avg. 91.30 88.07 88.34 89.39 89.27
Set B N1 N2 N3 N4 Avg.

SNR20 99.11 98.97 99.16 99.29 99.13
SNR15 98.56 98.16 99.02 98.43 98.54
SNR10 96.47 94.50 97.17 95.53 95.92
SNR5 88.18 82.62 89.38 83.96 86.04
SNR0 63.65 52.30 63.64 51.65 57.81

Avg. 89.19 85.31 89.67 85.77 87.49

Table 2. Summary of word accuracies for NMN-SPLICE.

Set A N1 N2 N3 N4 Avg.

SNR20 99.14 99.33 99.31 99.11 99.22
SNR15 98.25 98.55 98.93 98.24 98.49
SNR10 96.13 97.10 96.81 96.30 96.59
SNR5 90.39 90.05 89.86 89.17 89.87
SNR0 69.82 63.18 58.19 68.99 65.05

Avg. 90.75 89.64 88.62 90.36 89.84
Set B N1 N2 N3 N4 Avg.

SNR20 99.08 99.03 99.16 99.38 99.16
SNR15 98.71 98.37 98.81 98.52 98.60
SNR10 96.81 95.13 97.38 96.61 96.48
SNR5 90.36 89.21 90.55 88.77 89.72
SNR0 68.38 62.67 67.61 60.44 64.78

Avg. 90.67 88.88 90.70 88.74 89.75

Table 3. Summary of word accuracies for our proposed method.

Set A N1 N2 N3 N4 Avg.

SNR20 99.32 99.27 99.37 98.95 99.23
SNR15 98.62 98.79 98.87 98.33 98.65
SNR10 96.87 97.40 97.61 96.39 97.07
SNR5 91.56 90.45 90.34 89.79 90.54
SNR0 72.89 66.05 64.27 69.85 68.27

Avg. 91.85 90.39 90.09 90.66 90.75
Set B N1 N2 N3 N4 Avg.

SNR20 99.05 99.09 99.11 99.32 99.14
SNR15 99.02 98.28 99.11 98.70 98.78
SNR10 96.93 96.10 97.91 96.67 96.90
SNR5 91.10 88.88 91.71 89.48 90.29
SNR0 70.89 63.48 72.50 63.44 67.58

Avg. 91.40 89.17 92.07 89.52 90.54

set. The motivation behind this is that the proposed method does not
take the convolutive distortion into account at present. The multi-
style training set consists of the following four different noise en-
vironments: Subway (N1), Babble (N2), Airport (N3), and Exhibi-
tion (N4). Test set A consists of the same noise environments as
the multi-style training set while test set B contains Restaurant (N1),
Street (N2), Airport (N3), and Train-station (N4), which are unseen
in the training set.

Tables 1,2, and 3 show the word accuracies obtained with
SPLICE, NMN-SPLICE, and our proposed method, respectively.

NMN-SPLICE outperformed SPLICE in almost all noise environ-
ments. In particular, the improvement provided by NMN-SPLICE
was prominent in set B. This result coincides with the conclusion of
[6] and clearly shows that noise mean normalization effectively re-
duces the SPLICE’s sensitivity to variability of noise environments.
The proposed method outperformed NMN-SPLICE in all noise envi-
ronments. The relative improvement over NMN-SPLICE was 8.3%
on average. It is note worthy that the proposed method achieved a
very high accuracy even for the babble noise environments (test set
A, N2), where the noise characteristics change rapidly. This result
indicates that proposed method can handle the non-stationarity of
noise effectively.

Apart from the above experiment, we compared the proposed
method to the VTS-based MFCC enhancement algorithm. As the
noise model for VTS, we used a fixed single Gaussian model. The
proposed method outperformed VTS, which achieved word accura-
cies of 88.93% and 88.84% for test sets A and B, respectively.

5. CONCLUSION

In this paper, we proposed a new feature enhancement technique that
operates directly on MFCC vectors and exploits temporally changing
noise estimates. The proposed method modifies the original SPLICE
so that it uses temporally changing noise estimates for both space
division and feature mapping of SPLICE. The proposed method was
evaluated on the Aurora2 task, and it was shown that it could achieve
highly effective and computationally feasible MFCC enhancement
in non-stationary noise environments.
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