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ABSTRACT

This paper presents a new feature extraction algorithm called Power
Normalized Cepstral Coefficients (PNCC) that is based on auditory
processing. Major new features of PNCC processing include the
use of a power-law nonlinearity that replaces the traditional log non-
linearity used in MFCC coefficients, a noise-suppression algorithm
based on asymmetric filtering that suppress background excitation,
and a module that accomplishes temporal masking. We also pro-
pose the use of medium-time power analysis, in which environmen-
tal parameters are estimated over a longer duration than is com-
monly used for speech, as well as frequency smoothing. Experi-
mental results demonstrate that PNCC processing provides substan-
tial improvements in recognition accuracy compared to MFCC and
PLP processing for speech in the presence of various types of addi-
tive noise and in reverberant environments, with only slightly greater
computational cost than conventional MFCC processing, and with-
out degrading the recognition accuracy that is observed while train-
ing and testing using clean speech. PNCC processing also provides
better recognition accuracy in noisy environments than techniques
such as Vector Taylor Series (VTS) and the ETSI Advanced Front
End (AFE) while requiring much less computation. We describe an
implementation of PNCC using “on-line processing” that does not
require future knowledge of the input.

Index Terms— Robust speech recognition, feature extrac-
tion, physiological modeling, rate-level curve, asymmetric filtering,
medium-time power estimation, temporal masking, modulation fil-
tering, on-line speech processing

1. INTRODUCTION

In recent decades following the introduction of hidden Markov mod-
els and statistical language models, the performance of speech recog-
nition systems in benign acoustical environments has dramatically
improved. Nevertheless, most speech recognition systems remain
sensitive to the nature of the acoustical environments within which
they are deployed, and their performance deteriorates sharply in the
presence of sources of degradation such as additive noise, linear
channel distortion, and reverberation.

One of the most challenging contemporary problems is that
recognition accuracy degrades significantly if the test environment
is different from the training environment and/or if the acoustical
environment includes disturbances such as additive noise, channel
distortion, speaker differences, reverberation, and so on. Over the
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Fig. 1. The structure of the PNCC feature extraction algorithm.

years dozens if not hundreds of algorithms have been introduced to
address this problem. Many of these conventional noise compensa-
tion algorithms have provided substantial improvement in accuracy
for recognizing speech in the presence of quasi-stationary noise.
Unfortunately these same algorithms frequently do not provide sig-
nificant improvements in more difficult environments with transitory
disturbances such as a single interfering speaker or background mu-
sic. The development of PNCC feature extraction was motivated by
a desire to obtain a set of practical features for speech recognition
that are more robust with respect to acoustical variability, without
loss of performance when the speech signal is undistorted, and with
a degree of computational complexity that is comparable to that
of MFCC and PLP coefficients. While many of the attributes of
PNCC processing have been strongly influenced by consideration
of various attributes of human auditory processing, we have favored
approaches that provide pragmatic gains in robustness at small com-
putational cost over approaches that are more faithful to auditory
physiology in developing the specific processing that is performed.

Some of the innovations of the PNCC processing that we con-
sider to be the most important include:

• The replacement of the log nonlinearity in MFCC processing
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by a power-law nonlinearity.

• The use of “medium-time” processing with a duration of 50-
120 ms to analyze the parameters characterizing environmen-
tal degradation, in combination with the traditional short-time
Fourier analysis with frames of 20-30 ms used in conven-
tional speech recognition systems.

• The use of a form of “asymmetric nonlinear filtering” to es-
timate the level of the acoustical background noise for each
time frame and frequency bin.

• The development of computationally-efficient realizations of
the algorithms above that support “online” real-time process-
ing.

• The use of a form of “temporal masking.”

2. STRUCTURE OF THE PNCC ALGORITHM

Figure 1 shows the structure of the new PNCC approach which we
introduce in this paper. As in the case of MFCC processing, a pre-
emphasis filter of the form H(z) = 1 − 0.97z−1 is applied. A
short-time Fourier transform (STFT) is performed using Hamming
windows of duration 25.6 ms, with 10 ms between frames, using a
DFT size of 1024. Spectral power in 40 analysis bands is obtained
by weighting the magnitude-squared STFT outputs for positive fre-
quencies by the frequency response associated with a 40-channel
gammatone-shaped filter bank whose center frequencies are linearly
spaced in Equivalent Rectangular Bandwidth (ERB) [1] between 200
Hz and 8000 Hz. These filters are specified in detail in [2, 3]. We
obtain the short-time spectral power P [m, l] using the squared gam-
matone summation, where m and l represent the frame and channel
indices. As mentioned in our previous work [4], we estimate a quan-
tity we refer to as “medium-time power” Q̃[m, l] by computing the
running average of P [m, l], the power observed in a single analysis
frame. In PNCC, we use Q̃[m, l] only for noise estimation and com-
pensation, which are used to modify the information based on the
short-time power estimates P [m, l].

The processing described above is followed by a series of non-
linear time-varying operations that are performed using the longer-
duration temporal analysis that accomplish noise subtraction as well
as a degree of robustness with respect to reverberation. These steps,
which are major differences between the current implementation of
PNCC and the previous version described in [4], are described in
detail in Secs. 2.1 and 2.2. In our previous research on speech
enhancement and noise compensation techniques (e.g. [4]), it has
been frequently observed that smoothing the response across chan-
nels is helpful. In PNCC, we use the same type of spectral weighting
smoothing as in our previous research [4]. In order to minimize fur-
ther the potential impact of amplitude scaling in PNCC we invoke
a stage of mean power normalization. We normalize input power in
the present online implementation of PNCC by dividing the incom-
ing power by a running average of the overall power. More detailed
information about mean power normalization is provided in [2, 3].

The final stages of processing are also similar to MFCC and PLP
processing, with the exception of the carefully-chosen power-law
nonlinearity with exponent 1/15. Finally, we note that if the shaded
blocks in Fig. 1 are omitted, the processing that remains is referred
to as simple power-normalized cepstral coefficients (SPNCC). SP-
NCC processing has been employed in several of our other studies
on robust recognition.
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Fig. 2. Functional block diagram of the modules for asymmetric
noise suppression (ANS) and temporal masking in PNCC process-
ing.

2.1. Asymmetric noise suppression

In this section, we discuss a new approach to noise compensation
which we refer to as asymmetric noise suppression (ANS). This
procedure is motivated by the common observation that the speech
power in each channel usually changes more rapidly than the back-
ground noise power in the same channel [5]. In the approach that we
introduce, we obtain a running estimate of the time-varying noise
floor using an asymmetric nonlinear filter, and subtract that from the
instantaneous power.

Figure 2 is a block diagram of the complete asymmetric non-
linear suppression processing with temporal masking. Let us begin
by describing the general characteristics of the asymmetric nonlinear
filter that is the first stage of processing. This filter is represented by
the following equation for arbitrary input and output Q̃in[m, l] and
Q̃out[m, l], respectively:

Q̃out[m, l] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λaQ̃out[m− 1, l] + (1− λa)Q̃in[m, l],

if Q̃in[m, l] ≥ Q̃out[m− 1, l]

λbQ̃out[m− 1, l] + (1− λb)Q̃in[m, l],

if Q̃in[m, l] < Q̃out[m− 1, l]

(1)

where m is the frame index and l is the channel index, and λa and
λb are constants between zero and one. If 1 > λa > λb > 0, the
filter output Q̃out tends to follow the lower envelope of Q̃in[m, l].
In our processing, we will use this slowly-varying lower envelope to
serve as a model for the estimated medium-time noise level, and the
activity above this envelope is assumed to represent speech activity.
Hence, subtracting this low-level envelope from the original input
Q̃in[m, l] will remove a slowly varying non-speech component.

We will use the notation

Q̃out[m, l] = AFλa,λb
[Q̃in[m, l]] (2)

to represent the nonlinear filter described by Eq. (1). We note that
that this filter operates only on the frame indices m for each channel
index l.

Keeping the characteristics of the asymmetric filter described
above in mind, we may now consider the structure shown in Fig. 2.
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In the first stage, the lower envelope Q̃le[m, l], which represents the
average noise power, is obtained by ANS processing according to
the equation:

Q̃le[m, l] = AF0.999,0.5 [Q̃[m, l]] (3)

Q̃le[m, l] is subtracted from the input Q̃[m, l], effectively highpass
filtering the input, and that signal is passed through an ideal half-
wave linear rectifier to produce the rectified output Q̃0[m, l]. The
impact of the specific values of the forgetting factors λa and λb on
speech recognition accuracy is discussed below.

The remaining elements of ANS processing in the right-hand
side of Fig. 2 (other than the temporal masking block) are included to
cope with problems that develop when the rectifier output Q̃0[m, l]

remains zero for an interval, or when the local variance of Q̃0[m, l]
becomes excessively small. Our approach to this problem is moti-
vated by our previous work [4] in which it was noted that applying
a well-motivated flooring level to power is very important for noise
robustness. In PNCC processing we apply the asymmetric nonlinear
filter for a second time to obtain the lower envelope of the recti-
fier output Q̃f [m, l], and we use this envelope to establish this floor
level. This envelope Q̃f [m, l] is obtained using asymmetric filtering
as before:

Q̃f [m, l] = AF0.999,0.5[Q̃0[m, l]] (4)

As shown in Fig. 2, we use the lower envelope of the recti-
fied signal Q̃f [m, l] as a floor level for the ANS processing output
R̃[m, l] after temporal masking:

R̃sp[m, l] = max (Q̃tm[m, l], Q̃f [m, l]) (5)

where Q̃tm[m, l] is the temporal masking output depicted in Fig. 2.
Temporal masking for speech segments is discussed in Sec. 2.2.

We have found that applying lowpass filtering to the signal seg-
ments that do not appear to be driven by a periodic excitation func-
tion (as in voiced speech) improves recognition accuracy in noise by
a small amount. For this reason we use the lower envelope of the
rectified signal R̃le[m, l] directly for these non-excitation segments.
This operation, which is effectively a further lowpass filtering, is not
performed for the speech segments because blurring the power coef-
ficients for speech degrades recognition accuracy.

Excitation/non-excitation decisions for this purpose are obtained
for each value of m and l in a very simple fashion:

“excitation segment” if Q̃[m, l] ≥ cQ̃le[m, l] (6a)

“non-excitation segment” if Q̃[m, l] < cQ̃le[m, l] (6b)

where Q̃le[m, l] is the lower envelope of Q̃[m, l] as described above,
and in and c is a fixed constant. In other words, a particular value of
Q̃[m, l] is not considered to be a sufficiently-large excitation if it is
less than a fixed multiple of its own lower envelope. The parameter
values used for the current standard implementation are λa = 0.999
and λb = 0.5. We also observed that the threshold-parameter value
c = 2 provides the best performance for white noise, but the value
of c has little impact on performance in background music and in the
presence of reverberation.

2.2. Temporal masking

In temporal masking, we first obtain the on-line peak power Q̃p[m, l]
for each channel using the following equation:

Q̃p[m, l] = max
(
λtQ̃p[m− 1, l], Q̃0[m, l]

)
(7)

where λt is the forgetting factor for obtaining the on-line peak. As
before, m is the frame index and l is the channel index. Temporal
masking for speech segments is accomplished using the following
equation:

R̃sp[m, l] =

{
Q̃0[m, l], Q̃0[m, l] ≥ λtQ̃p[m− 1, l]

μtQ̃p[m− 1, l], Q̃0[m, l] < λtQ̃p[m− 1, l]
(8)

We have found [2] that if the forgetting factor λt is equal to or less
than 0.85 and if μt ≤ 0.2, recognition accuracy remains almost
constant for clean speech and most additive noise conditions, and if
λt increases beyond 0.85, performance degrades. The value of λt =
0.85 also appears to be best in the reverberant condition. For these
reasons we use the values λt = 0.85 and μt = 0.2 in the standard
implementation of PNCC. The final output of the asymmetric noise
suppression and temporal masking modules is R̃[m, l] = R̃sp[m, l]

for the excitation segments and R̃[m, l] = Q̃f [m, l] for the non-
excitation segments.

3. EXPERIMENTAL RESULTS

In this section we describe the recognition accuracy obtained using
PNCC processing in the presence of various types of degradation
of the incoming speech signals. We used the version of conven-
tional MFCC processing implemented as part of sphinx fe in
sphinxbase 0.4.1 both from the CMU Sphinx open source
codebase. We used the PLP-RASTA implementation that is avail-
able at [6]. In all cases decoding was performed using the publicly-
available CMU Sphinx 3.8 system using training from SphinxTrain
1.0. We also compared PNCC with the vector Taylor series (VTS)
noise compensation algorithm [7] and the ETSI advanced front end
(AFE) which has several noise suppression algorithms included [8].
In the case of the ETSI AFE, we excluded the log energy element
because this resulted in better results in our experiments. A bigram
language model was used in all experiments. For experiments based
on the DARPA Wall Street Journal (WSJ) 5000-word database we
trained the system using the WSJ0 SI-84 training set and tested it on
the WSJ0 5K test set.

Figure 3 describe the recognition accuracy obtained with PNCC
processing in the presence of street noise, and speech from a single
interfering speaker as a function of SNR, as well as in the simulated
reverberant environment as a function of reverberation time for the
DARPA WSJ0 SI-84/5k database. For the experiments conducted in
noise we prefer to characterize the improvement in recognition ac-
curacy by the amount of lateral shift of the curves provided by the
processing, which corresponds to an increase of the effective SNR.
In the presence of street noise, and interfering speech, PNCC pro-
vides improvements of approximately 7.5 dB, 3.5 dB, respectively.
We also note that PNCC processing provides considerable improve-
ment in reverberation, especially for longer reverberation times.

The curves in Fig. 3 are organized in a way that highlights
the various contributions of the major components. Beginning with
baseline MFCC processing the remaining curves show the effects of
adding in sequence (1) the power-law nonlinearity, (2) the ANS pro-
cessing, and finally (3) the gammatone frequency integration, spec-
tral smoothing, and mean power normalization. It can be seen from
the curves that a substantial improvement can be obtained by sim-
ply replacing the logarithmic nonlinearity of MFCC processing by
the power-law rate-intensity function. The addition of the ANS pro-
cessing provides a substantial further improvement for recognition
accuracy in noise. The temporal masking is particularly helpful in
improving accuracy for reverberated speech and for speech in the
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Fig. 3. Recognition accuracy obtained using PNCC processing in various types of additive noise and reverberation. Results are described for
the DARPA WSJ0 database in the presence of (a) street noise, (b) interfering speech, and (c) artificial reverberation.
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Fig. 4. Comparison of recognition accuracy for PNCC with processing using MFCC features, ETSI AFE, MFCC with VTS, and RASTA-PLP
features using the DARPA WSJ0 corpus. Environmental conditions are (a) white noise, (b) street noise, (c) background music, (d) interfering
speech, and (e) reverberation.
presence of interfering speech. Figure 4 provide comparisons of
PNCC processing to the baseline MFCC processing with cepstral
mean normalization, MFCC processing combined with the vector
Taylor series (VTS) algorithm for noise robustness [7], as well as
RASTA-PLP feature extraction [9]. We note in Fig. 4 that PNCC
provides substantially better recognition accuracy than both MFCC
and RASTA-PLP processing for all conditions examined. It also
provides recognition accuracy that is better than the combination of
MFCC with VTS, and at a substantially lower computational cost
than the computation that is incurred in implementing VTS. The
ETSI Advanced Front End (AFE) [8] generally provides slightly bet-
ter recognition accuracy than VTS in noisy environments, but the ac-
curacy obtained with the AFE does not approach that obtained with
PNCC processing in the most difficult noise conditions. Neither the
AFE nor VTS improve recognition accuracy in reverberant environ-
ments compared to MFCC features, while PNCC provides measur-
able improvements in reverberation, and a closely related algorithm
[10] provides even greater recognition accuracy in reverberation (at
the expense of somewhat worse performance in clean speech).

PNCC processing is approximately 34.6 percent more computa-
tionally costly than MFCC processing and 1.31 percent more costly
than PLP processing in our calculation [2, 3]. More detailed infor-
mation about computational cost is available in [2, 3].

Further details about the motivation for and implementation of
PNCC processing are available in [2, 3]. Open Source MATLAB
code for PNCC may be found at http://www.cs.cmu.edu/
˜robust/archive/algorithms/PNCC IEEETran. The
code in this directory was used for obtaining the results for this
paper.

4. REFERENCES

[1] B. C. J. Moore and B. R. Glasberg, “A revision of Zwicker’s
loudness model,” Acustica - Acta Acustica, vol. 82, pp. 335–
345, 1996.

[2] C. Kim, “Signal processing for robust speech recognition mo-

tivated by auditory processing,” Ph.D. dissertation, Carnegie
Mellon University, Pittsburgh, PA USA, October 2010.

[3] C. Kim and R. M. Stern, “Power-Normalized Cepstral Coeffi-
cients (PNCC) for Robust Speech Recognition,” IEEE Trans.
Audio, Speech, Lang. Process., (in submission).

[4] C. Kim and R. M. Stern, “Feature extraction for robust speech
recognition based on maximizing the sharpness of the power
distribution and on power flooring,” in IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, March 2010, pp.
4574–4577.

[5] B. E. D. Kingsbury, N. Morgan, and, S. Greenberg, “Robust
speech recognition using the modulation spectrogram,” Speech
Communication, vol. 25, no. 1–3, pp. 117–132, Aug. 1998.

[6] D. Ellis. (2006) PLP and RASTA (and MFCC, and inversion)
in MATLAB using melfcc.m and invmelfcc.m. [Online].
Available: http://labrosa.ee.columbia.edu/matlab/rastamat/

[7] P. J. Moreno, B. Raj, and R. M. Stern, “A vector Taylor series
approach for environment-independent speech recognition,” in
IEEE Int. Conf. Acoust., Speech and Signal Processing, May.
1996, pp. 733–736.

[8] Speech Processing, Transmission and Quality Aspects (STQ);
Distributed Speech Recognition; Advanced Front-end Fea-
ture Extraction Algorithm; Compression Algorithms, Euro-
pean Telecommunications Standards Institute ES 202 050, Rev.
1.1.5, Jan. 2007.

[9] H. Hermansky and N. Morgan, “RASTA processing of
speech,” IEEE. Trans. Speech Audio Process., vol. 2, no. 4,
pp. 578–589, Oct. 1994.

[10] C. Kim and R. M. Stern, “Nonlinear enhancement of onset
for robust speech recognition,” in INTERSPEECH-2010, Sept.
2010, pp. 2058–2061.

4104


