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ABSTRACT

Last year we proposed a new acoustic modeling method called
eigentriphones in which all triphones are distinct (with no tied states)
so that they may be more discriminative. In our method, frequent
triphones are used to derive an eigenbasis using PCA, and the in-
frequent triphones are then “adapted” as a linear combination of
the eigenvectors which are also called eigentriphones. Although
the eigentriphones method compares favorably with traditional tied-
state triphones, the PCA procedure has two limitations: (1) only the
frequent triphones are employed, and (2) they are considered “equal”
even though some are more robust than the others. In this paper,
weighted PCA is proposed to solve both problems so that all tri-
phones — frequent and infrequent triphones — may contribute to the
derivation of the eigentriphones, each at a different extent depend-
ing on its sample count. Experimental evaluation on the WSJ 5K-
vocabulary speech recognition task shows that weighted PCA pro-
duces better models than simple PCA, and its performance is fairly
independent of the number of eigentriphones once more than 20% of
them are used. As a consequence, all triphones may be represented
by fewer eigentriphones, resulting in a more compact model.
Index Terms: Eigentriphones, eigenvoice adaptation, context-
dependent acoustic modeling, weighted PCA.

1. INTRODUCTION

In acoustic modeling, one has to strike a balance between detailed
context-dependency (CD) modeling [1] and robust training. The
number of context-dependent modeling units (e.g. triphones or quin-
phones) grows exponentially with the contexts while the training
samples for the contexts distribute unevenly. For instance, it is found
that on the Wall Street Journal corpus, 80% of the data are con-
tributed by 20% of the triphones observed in the corpus. How to
train the infrequent context-dependent units robustly is one of the
major problems in acoustic modeling.

There are three common approaches:

• Parameter tying (sharing) as done in generalized tri-
phones [1], state tying [2], shared distributions or senones [3],
and tied subspace Gaussian distributions [4].

• Model interpolation: detailed models are interpolated with
models of lower resolution as in generalized triphones [1] and
back-off discriminative acoustic model [5].
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• Basis approach: a common basis is constructed, and all mod-
els are represented by some combination of the basis compo-
nents. This includes subspace Gaussian mixture model [6],
Bayesian sensing HMM [7], and canonical state model [8].

Last year we proposed a new acoustic modeling method called
eigentriphone [9, 10] in which all triphones are distinct (with no
tied states) so that they can be more discriminative. In eigentri-
phone modeling, frequent triphones, which can be robustly trained,
are used to derive an eigenbasis using principal component analy-
sis (PCA), and the infrequent triphones are then derived as a linear
combination of its eigenvectors which are also called eigentriphones.
Although the eigentriphone method compares favorably with tradi-
tional tied-state triphones, the PCA procedure has two limitations:
(1) only a subset of triphones — the frequent triphones — may be
employed to derive the eigenbasis, and (2) all the frequent triphones
employed for PCA are considered “equal” although some are consid-
ered more robust than the others. In this paper, weighted PCA [11]
is used to solve both problems so that all triphones — frequent and
infrequent triphones — may contribute to the derivation of eigentri-
phones, each at a different extent depending on its frequency.

This paper is organized as follows. In Section 2, we will review
our eigentriphone modeling method. The proposed improvement us-
ing weighted PCA is described in Section 3. That is followed by
experimental evaluation in Section 4 and conclusions in Section 5.

2. REVIEW OF EIGENTRIPHONE MODELING

We will first briefly review our current derivation procedure of
model-based eigentriphones as described in [10], and then describe
the proposed improvements in the next Section.

The eigentriphone approach for acoustic modeling is inspired
by the eigenvoice method [12] in speaker adaptation. Speaker-
dependent models in eigenvoice are replaced by triphone models in
eigentriphone, and the derivation of eigentriphones is repeated for
each base phoneme (or monophone). Thus, since there are 39 base
phonemes in our systems, 39 sets of eigentriphones have to be de-
rived.

At the core of eigentriphone modeling is the use of PCA to de-
rive an eigenbasis. To make sure the derived basis is reliable, in the
past, triphones of a base phoneme are divided into 2 groups: the rich
set whose triphones have sufficient training samples for robust train-
ing, and the poor set whose triphones have to be adapted using the
eigentriphones.
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The following procedure is repeated for each base phone i using
its triphones that appear in the training corpus.

STEP 1: Monophone hidden Markov model (HMM) of base
phoneme i is first estimated from the training data. Each mono-
phone is a 3-state strictly left-to-right HMM, and each state is rep-
resented by an M -component Gaussian mixture model (GMM).

STEP 2: The monophone HMM is then cloned to initialize all its
triphones. No state tying is performed.

STEP 3: Categorize each triphone q of base phoneme i into one of
the following two (possibly overlapping) sets based on its training
sample counts niq and two thresholds θRm and θPm:

• the rich triphone set ΩR
i if niq ≥ θRm, or

• the poor triphone set ΩP
i if niq < θPm.

STEP 4: Only Gaussian means of the rich triphones are re-
estimated. Their Gaussian covariances, mixture weights, and
transition probabilities are copied from their base phoneme
HMM.

STEP 5: For each rich triphone r ∈ ΩR
i , create a triphone supervec-

tor vir by stacking up all Gaussian mean vectors from its three
states as below

vir =

[μir11, μir12, · · · , μir1M ,

μir21, μir22, · · · , μir2M ,

μir31, μir32, · · · , μir3M ]

, (1)

where μirjm, j = 1, 2, 3, and m = 1, 2, . . . ,M is the mean
vector of the mth Gaussian component at the jth state of triphone
r.

STEP 6: Derive an eigenbasis from the correlation matrix of all rich
triphone supervectors vi1, vi2, . . ., vi|ΩR

i | using principal com-
ponent analysis (PCA).

STEP 7: The supervector vip of any poor triphone p ∈ ΩP
i is as-

sumed to lie in the eigenbasis as follows:

vip = ei0 +

|ΩR
i |∑

k=1

wipkeik , (2)

where ei0 is the mean of all triphone supervectors of phoneme
i, {eik, k = 1, 2, . . . , |ΩR

i |} are the eigenvectors arranged
in descending order of their eigenvalues λik, and wip =
[wip1, wip2, . . . , wipKi ] is the eigentriphone coefficients vector
of triphone p in the “eigentriphone space”.

STEP 8: Estimate the eigentriphone coefficient vector wip of any
poor triphone p by maximizing the following penalized log like-
lihood function:

Q(wip) = L(wip)− β

⎛
⎝

|ΩR
i |∑

k=1

w2
ipk

λik

⎞
⎠ , (3)

where L(·) is the log likelihood of the training data, and β is the
regularization factor.

STEP 9: The Gaussian mean of the mth mixture at the jth state of
poor triphone p can be obtained from vip as

μipjm = ei0jm +

Ki∑
k=1

wipkeikjm . (4)

STEP 10: The Gaussian covariances, mixture weights, and transi-
tion probabilities of triphones in the rich set are then re-estimated.

3. IMPROVEMENT WITH WEIGHT PCA

In this paper, we investigate further improvement to the above eigen-
triphones derivation procedure in two aspects:

• To avoid the ad hoc categorization of triphones into the rich or
poor set. Instead, all triphones may contribute to the deriva-
tion.

• Due to the uneven distribution of training data, some tri-
phones are trained more robustly than the others. It is de-
sirable to incorporate some notion of triphone reliability in
the construction of the eigenbasis.

Weighted PCA is a natural solution to both problems.

3.1. Weighted PCA (WPCA)

There are generally two ways to perform weighted PCA [11]:

• weigh each variable in the feature vector differently. This
also may be considered as a generalization of using the cor-
relation matrix for PCA, and normalize the covariance matrix
by weights other than the standard deviations of the variables.

• weigh each observation differently. This may also be consid-
ered as a re-sampling of the observations.

Here we adopt the second form of weighted PCA, and weigh
each triphone supervector by its sample count. In other words, we
assign a reliability measure to each triphone supervector that is di-
rectly proportional to its sample count. Thus, the PCA procedure in
STEP 6 of Section 2 is replaced by weighted PCA. That is, the new
correlation matrix for PCA is computed from the following covari-
ance matrix:

1

ni

∑
q

niq(viq − v̄i)(viq − v̄i)
′ , (5)

where niq is the sample count of the triphone q of base phoneme
i, ni =

∑
q niq , and v̄i is the new weighted mean of the triphone

supervectors.

3.2. Pruning of Eigentriphones

As will be seen in the next Section on experimental results, the use
of weighted PCA has the additional benefit that the eigenspectrum
is concentrated more in the eigenvectors with higher eigenvalues.
As a result, fewer eigentriphones (i.e., a smaller subspace) may be
employed to represent all triphones1 with little or no performance
degradation, resulting in a much more compact but distinctive set of
triphone models.

3.3. Other Changes

Lastly, we also modify STEP 10 of Section 2 as follows. Firstly, in-
stead of using the covariances from monophones, covariances from
the tied-state triphones are copied to the “eigentriphone-adapted” tri-
phones. Then the covariances, mixture weights, and transition prob-
abilities of those triphones with sample counts exceeding the thresh-
olds θv , θw, and θt are re-estimated. Secondly, in the past, unseen
triphones adopted the HMM parameters from the monophones. Now
their parameters are determined from the tied-state triphones.

1In the past, only the poor triphones were represented as points in the
eigentriphone space, and the rich triphones had their own conventional HMM
descriptions.
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Table 1. Information of various data sets.

Data Set #speakers #utterances vocab size OOV

SI284 283 37,413 13,646 11.95%

si dt 05.odd 10 248 1,260 0

Nov’93 10 215 1,004 0.29%

4. EXPERIMENTAL EVALUATION

4.1. Speech Corpora and Experimental Setup

The standard SI-284 Wall Street Journal (WSJ) training set was used
for training the speaker-independent model. It consists of 7,138
WSJ0 utterances from 83 WSJ0 speakers and 30,275 WSJ1 utter-
ances from 200 WSJ1 speakers. Thus, there is a total of about 70
hours of read speech in 37,413 training utterances from 283 speak-
ers. All the training data are endpointed.

The standard Nov’93 5K non-verbalized test set were used for
evaluation using the standard 5K-vocabulary bigram that came along
with the WSJ corpus. The set si dt 05.odd contains alternate sen-
tences from the 1993 WSJ 5k Hub development test set after sen-
tences with OOV words were removed. It was used to tune the sys-
tem parameters. A summary of these data sets is shown in Table 1.

There were altogether 18,777 cross-word triphones based on 39
base phonemes. Each triphone model was a strictly left-to-right 3-
state continuous-density hidden Markov model (CDHMM), with a
Gaussian mixture density of at most M = 16 components per state.
In addition, there were a 1-state short pause model and a 3-state si-
lence model. The traditional 39-dimensional MFCC vectors were
extracted at every 10ms over a window of 25ms.

Recognition was performed using the HTK toolkit [13] with a
beam search threshold of 350.

4.2. Baseline Systems

Three baseline systems were trained for comparison.

• Baseline1: Eigentriphone modeling result using conventional
PCA as in [10].

• Baseline2: A conventional tied-state triphone system. There
were totally 6,481 tied states which were derived from a pho-
netic decision tree. The number of tied-states was selected to
maximize the accuracy on the development set.

• Baseline3: A triphone system with no tied states. The corre-
sponding monophone system was first trained and then cloned
to initialize the triphones. Then the Gaussian means of tri-
phones were re-estimated with Baum-Welch training.

The recognition results of these baselines are shown in Table 2.

4.3. Eigentriphone Acoustic Modeling

The eigentriphone model-based adaptation was carried using the
baseline3 models according to the procedure described in Section 2.
The dimension of each triphone supervectors is 3 (states) ×16 (mix-
tures) ×39 (MFCC) = 1872 parameters. The standard ML training
was done using HTK [13]. There are altogether 16,713 triphones3

220% of eigentriphones give the best results on the development data set.
3By default, triphones with no more than 2 samples are not updated by

HTK. Thus, every reference triphone here has at least 3 samples.

Table 2. Recognition word accuracy (%) of various systems on the
WSJ 5K task using bigram language model. (The figure with an ∗ is
statistically and significantly better than Baseline1 result.)

Model Description Nov’93

Baseline1 eigentriphone modeling result using
PCA (Interspeech 2011 [10])

92.44

Baseline2 tied-state triphones 91.97

Baseline3 no state tying; only Gaussian means of
all triphones are trained

90.34

+ eigentriphone “adaptation” using
weighted PCA for the Gaussian means
of all triphones; pruned to use 20% of
eigentriphones2

91.43

+ Copying Gaussian covariances from
the tied-state triphones (baseline2)

92.44

+ further re-estimation of Gaussian co-
variances, mixture weights, and transi-
tion probabilities when the respective
re-estimation thresholds are met

92.67

Final model if 40% of eigentriphones
found by weighted PCA were used

92.88∗

used to deduce the 39 sets of eigentriphone. The regularization pa-
rameter β was set to 1.0, and the sample count thresholds for the
re-estimation of covariances, mixture weights and transition proba-
bilities were set to θv = θw = θt = 200.

4.4. Results and Discussions

Table 2 shows the incremental improvements obtained from the new
eigentriphone acoustic modeling procedure. As we can see, the new
eigentriphone modeling procedure using weighted PCA produces
triphone models better than our past effort using conventional PCA
as in [10] by an absolute 0.23% even if only 20% of the total number
of eigentriphones are used. The improvement goes up to an absolute
0.44% if 40% of eigentriphones are used, and the improvement is
statistically significant when compared with the tied-state triphones
(baseline2).

4.4.1. Effect of Weighted PCA and Eigentriphone Pruning

Different numbers of eigentriphones were tried for adapting the
Gaussian means. The recognition performance of the ensuing mod-
els on the Nov’93 test set using bigram and trigram language model
is plotted in Fig. 1 and Fig. 2 respectively. It is observed that the
performance of models derived using weighted PCA is fairly con-
stant when more than 20% of eigentriphones are used. On the other
hand, the performance of models derived from conventional PCA de-
grades monotonically with the use of decreasing number of eigentri-
phones. The phenomenon may be explained by the eigenspectra ob-
tained from the two PCA procedures as shown in Fig. 3 for the base
phoneme [aa]. From Fig. 3, one can see that weighted PCA (with the
proposed weighting function) effectively captures most of the vari-
ances in the data in much fewer leading eigentriphones than con-
ventional PCA. This allows pruning the number of eigentriphones to
about 20% of them to obtain a much more compact model.
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Fig. 1. Effect of weighted PCA and eigentriphone pruning using
bigram LM.
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Fig. 2. Effect of weighted PCA and eigentriphone pruning using
trigram LM.
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Fig. 3. Eigenspectra obtained from weighted PCA and conventional
PCA for the base phoneme [aa].

5. CONCLUSIONS AND FUTURE WORK

In this paper, the eigentriphone acoustic modeling procedure is im-
proved by using weighted PCA in deriving the eigenvectors (or
eigentriphones). Each reference triphone supervector is assigned
a weight that is proportional to its amount of training data so that
the reliability of the triphone supervectors is taken into account in
the PCA procedure. As a result, a few leading eigentriphones are
sufficient to represent all the triphones, rendering the final triphone
models much compact than before: for example, for the WSJ task
in Section 4, the number of model parameters drop from 50.4 mil-
lions (when 100% of eigentriphones are used) to 17.6 million (when
20% of eigentriphones are used), which is about two times that of
conventional tied-state triphone models4.

Besides weighted PCA, we would like to investigate other di-
mension reduction procedures such as LDA or ICA.
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