
TOWARDS SINGLE PASS DISCRIMINATIVE TRAINING FOR SPEECH RECOGNITION

Roger Hsiao and Tanja Schultz

InterACT, Language Technologies Institute
Carnegie Mellon University

Pittsburgh, PA 15213
{wrhsiao, tanja}@cs.cmu.edu

ABSTRACT

This paper describes how we can combine our previously proposed
fast extended Baum-Welch algorithm and generalized discriminative
feature transformation to achieve single pass discriminative training,
which we only process the data once. Compared to the state of the art
training procedure, which uses feature space maximum mutual infor-
mation (fMMI) and boosted maximum mutual information (BMMI),
our proposed training procedure can achieve around 80% of the im-
provement available from discriminative training. We also show that
if we are allowed to process the data twice, it is possible to achieve
almost all of the improvement. We evaluate different training proce-
dures on various large scale tasks using Iraqi and modern standard
Arabic speech recognition systems.

Index Terms— Speech recognition, discriminative training.

1. INTRODUCTION

Discriminative training is an expensive but effective process to im-
prove recognition accuracy for automatic speech recognition (ASR)
systems. The lengthy training time is often due to the huge amount
of data required to build a high performance system. Also, as long
as ”there is no data like more data” remains true, one can foresee
that discriminative training will dominate the development time for
an ASR system. This is not desirable since the cost of discriminative
training may eventually exceed the available processing power and it
may hinder the researchers to exploit the virtually unlimited amount
of data to improve an ASR system.

In our previous work, we proposed Generalized Baum-Welch
(GBW) algorithm and Generalized Discriminative Feature Transfor-
mation (GDFT). Both algorithms give insights about the optimiza-
tion involved in discriminative training. In [1], based on GBW, we
proposed a variant of EBW algorithm which can reduce the training
time by half without sacrificing any recognition performance. In [2],
we proposed an optimization algorithm for joint feature space and
model space discriminative training.

The goal of this paper is to combine our previous work and ex-
plore how much improvement we can achieve from discriminative
training if we can process the data only once. If this single-pass
discriminative training is feasible, it helps lowering the cost of dis-
criminative training.

This paper is organized as follows: in section 2, we review the
GBW algorithm and our proposed fast EBW algorithm. Then in
section 3, we review GDFT and introduce some enhancement which
can improve GDFT. In section 4, we report experimental results on
the single-pass discriminative training. We conclude our work and
discuss future work in section 5.

2. RECURSIVE EBW ALGORITHM

In [1], we proposed the GBW algorithm and we explained that both
BW and EBW algorithms are special cases of our GBW algorithm.
Instead of optimizing the discriminative objective function directly,
GBW optimizes,

min
μ,Σ

G(μ, Σ) =
X

i

|Qi(X, μ, Σ) − Ci| +
X

j

DjR(Nj , N
0
j ) (1)

where Nj is the j-th Gaussian distribution in the acoustic model;
X = x1, . . . , xT represents the feature vectors; μ and Σ represent
the mean vectors and the covariance matrices which we are optimiz-
ing; N0

j is the backoff Gaussian for Nj ; i is an index referring to all
the references and their competitors in the train set; Qi is an aux-
iliary function representing negative log likelihood; Ci is the target
value for Qi and R(Nj , N

0
j ) is a regularization function.

When R is defined as the cross entropy from N0
j to Nj ,
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0
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j ||Nj) = H(N0
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j ||Nj) , (2)

where H(N0
j ) is the entropy of the backoff Gaussian distribution,
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and KL(N0
j ||Nj) is the KL divergence from N0
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with K meaning the dimension of the features, we obtain the update
equations for the Gaussian distribution Nj ,
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where αi and βi are the Lagrange multipliers used by the GBW al-
gorithm [1].

Cross entropy measures the average number of bits required to
encode Nj given N0

j is the true distribution. This is reasonable for
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regularization since cross entropy increases when Nj moves too far
away from the backoff Gaussian N0

j . However, N0
j in the EBW

algorithm is either the ML model or the model from the previous
EM iteration. In most cases, N0

j is inferior and it is not the true
distribution. While the true distribution is unknown, if we believe
the model after the EBW update is better in terms of accuracy, we
can use the updated model as the backoff model. By doing so, we
treat the EBW/GBW update equations as some recurrence equations.
The M-step of the EBW algorithm becomes an recursive procedure,

μ
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P
t
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t (j)xt −
P
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where the subscripts r and c represent the reference/numerator and
competitor/denominator statistics respectively; μm+1

j and Σm+1
j are

the Gaussian parameters of the (m + 1)-th iteration, which depend
on the parameters of the m-th iteration; If we perform only one it-
eration, it is the same as the standard EBW/GBW algorithm. If we
perform two iterations, it is like we are using the Gaussian com-
puted from standard EBW/GBW algorithm as a backoff parameter.
In this paper, we use the variable M to denote how many M-steps
are performed after each E-step. In practice, we found that two to
four M-steps is enough for faster convergence.

3. GENERALIZED DISCRIMINATIVE FEATURE
TRANSFORMATION

This section investigates the possibility of performing single-pass
feature space discriminative training. Feature space MMI/MPE
(fMMI/MPE) [3] and region dependent linear transformation
(RDLT) [4] are two commonly used algorithms for feature space dis-
criminative training. Both methods use gradient based optimization
to estimate the feature transforms. Each iteration of fMMI/MPE and
RDLT requires three passes on the data. The first pass is to collect the
statistics for computing the indirect gradient. The second pass com-
putes the gradients and the final pass performs single-pass retraining
or ML update of the acoustic models. Since fMMI/MPE and RDLT
require multiple passes on the data for each iteration, they are expen-
sive and not suitable to our scenario which only allows single-pass
on the data. However, we still compare the performance of our pro-
posed approaches with systems using fMMI and see how much gain
can be obtained from feature space discriminative training.

In [2], we proposed generalized discriminative feature trans-
formation(GDFT) to perform feature space discriminative training.
GDFT can be considered as a discriminative version of constrained
MLLR (CMLLR), which optimizes the feature transforms over the
whole train set. GDFT uses the same mathematical framework of
GBW which optimizes,

G(W ) =
X

i

|Qi(W ) − Ci| +
D

2
||W − W

0||2F , (9)

where W is the linear transformation of GDFT with transform ma-
trix A and bias b (W ≡ [A; b]); W 0 is the backoff transform which
is either the identity transform or the transform from the previous
EM iteration; ||W − W 0||2F is the Frobenius norm between W and
W 0 and D is a tunable parameter controlling the weight of this reg-
ularization term.

Equation 9 can be solved by Lagrange relaxation like GBW, and
GDFT has a similar update equations compared to CMLLR [5],

wd = (δpd + k
(d))G(d)−1

. (10)

where wd is the d-th row of W ; pd = [cd1, . . . , cdn, 0] is the ex-
tended cofactor row vector of A (cij = cof(Aij)) , and,
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where ζt = [x′

t, 1]
′.

When GDFT is used with multiple transforms, GDFT is the
same as fMMI/MPE and RDLT which uses a Gaussian mixture
model (GMM) to compute the posterior probabilities for weighted
average. However, equation 10 assumes that each frame can only be
allocated to one and only one transform instead of using a weighted
sum of posterior probabilities. This constraint comes from the way
how CMLLR solves the equations which maintains the feature trans-
formation is equivalent to model transformation. To remove such
constraint, one can either uses quasi-Newton methods to optimize
the transforms like the work in [6] or to solve a big system of linear
equations. However, both methods are computationally expensive.

3.1. Context Transform for GDFT

As described, GDFT performs linear transformation on the feature
vectors directly. In contrast, fMMI/MPE and RDLT can exploit
the information available in the features within a context window,
and also high dimensional posterior features. The linear transforms
trained by fMMI/MPE and RDLT project the high dimensional fea-
tures to the original feature space. The projection can be consid-
ered as some form of feature selection and it is optimized for some
discriminative objective function. We propose an optimization algo-
rithm for GDFT to perform a similar function, which allows GDFT
to exploit the information available in different features.

Suppose we try to estimate a projection matrix P ,

G(P ) =
X

i

|Qi(P ) − Ci| +
D

2
||P − P

0||2F , (14)

where Qi(P ) =
P

t

P
j
γi

t(j)(Pyt − μj)
′Σ−1

j (Pyt − μj) is

an auxiliary function to represent negative log likelihood; P 0 is
the backoff projection. The projection matrix P projects the high
dimensional feature yt to the original feature space. yt can be
constructed using the original feature xt. For example, yt =
[x′

t−f , . . . , x′

t, . . . , x
′

t+f , 1]′ where yt is a supervector constructed
by stacking the features within a context window of ±f frames.
While there are many different ways to construct yt, this paper fo-
cuses on the context features.

Similar to GBW and GDFT, we use Lagrange relaxation to solve
equation 14, and we obtain the row-by-row update equation for P ,

Pd = k
(d)
y G

(d)−1
y (15)

where Pd is the d-th row of P , and,
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Similar to fMMI/MPE, the feature vectors are first transformed
using the main transforms, W . Then, the features are stacked to form
supervectors and we apply the projection as described in equation 15
to retrieve the final feature vectors in the feature space.

During training, the projection and the main transforms are
jointly optimized. Although we can have multiple projections, we
choose to have one projection transform and multiple main trans-
forms like fMMI/MPE. For fMMI/MPE, only 10% of the training
data is assigned to train the projection matrix. According to [3], it is
to prevent the projection simply scales the transformed features. We
adopt the same procedure for GDFT, which only 10% of the data
is assigned to train the projection. In addition to solving the issues
mentioned in [3], this also greatly speeds up the training process
since for 90% of the data, GDFT operates on the low dimensional
features, as computing Gd and kd are much more efficient than com-
puting Gd

y and kd
y . One should note that this procedure does not

benefit fMMI/MPE in terms of computation since fMMI/MPE uses
gradient descent and the computation of the gradient must involve
the high dimensional features.

4. EXPERIMENTAL SETUP

We conducted our experiments on two systems. Table 1 summarizes
the configuration of these systems. Detailed system description of
the Iraqi ASR is available in [7] and description of the MSA ASR
system is available in [8]. For the experiments, the Iraqi system used
the TransTac Jun08 open set as dev set, and Nov08 open set as the
unseen test set. The MSA system used GALE dev07/09 as dev sets,
and eval09 and a three hours subset of dev10 as the unseen test sets.

Iraqi ASR MSA ASR
Train data 450 hr 1100 hr

System type SA, 1-pass SA, 3-pass
Vocab size 62K 737K
Adaptation Incremental Batch
# Gaussians 308K 867K

LM 3-gram 4-gram

Table 1. Description of the Iraqi and the MSA ASR systems.

We first compared regular discriminative training procedures
with the single-pass discriminative training. For both regular and
single-pass training, we use BMMI for model space discriminative
training [9], and for feature space training, we use fMMI and our
proposed GDFT. Both fMMI and GDFT have a context window of
±7 frames and have 2048 main transforms. Performing fMMI fol-
lowed by BMMI training is considered to be the state of the art for
discriminative training.

Figure 1 shows that performing fMMI followed by BMMI
(fMMI→BMMI) achieves 31.8% WER which improves the base-
line ML model by 14.1% relative. If we replace fMMI with GDFT,
we get 31.9% WER which is very similar to fMMI→BMMI. It is in-
teresting to note that although fMMI outperforms GDFT alone, both
training procedures give very similar performance after the model
space training.

For single-pass training, we achieve 32.5% WER by using one
EM iteration of GDFT and one EM iteration of BMMI using our re-
cursive EBW algorithm with four M-steps (M=4). This performance
is the same as the regular BMMI training without fMMI/GDFT
(32.5%), but the regular BMMI training would need four passes on
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Fig. 1. Performance of different training procedures. This experi-
ment is performed on the TransTac Jun08 open set using the Iraqi
ASR system.

the train set instead of one. If we omit the GDFT for the single-
pass training, the performance is 33.2% WER. In sum, our single-
pass training achieves 86.5% of the total improvement available
from discriminative training. If we release the single-pass constraint
and allow two passes of the data, GDFT(M=1)+BMMI(M=2) gives
32.0% WER at the second EM iteration. This means it obtains
96.1% of the improvement available in the best training procedure
(fMMI→BMMI). Table 2 summarizes the cost of each EM itera-
tion for GDFT, fMMI and BMMI. We can see that discriminative
training is very expensive but our proposed training procedure can
drastically reduce the computation and yet, obtain most of the im-
provement from discriminative training.

fMMI GDFT BMMI
∼5 days ∼1 day ∼12 hours

Table 2. The time required for each EM iteration of fMMI, GDFT
and BMMI on the 450-hr Iraqi train set. The benchmark was done on
20 CPU cores @ ∼2.66GHz. The costs reported here do not include
the time for lattice generation. For single pass training using GDFT
and BMMI, the time is similar to running GDFT alone.

Model/GDFT M=1 M=2 M=3 M=4

ML 35.9% 35.6% 35.7% 35.7%
BMMI(M=4) 32.5% 33.0% 33.1% 33.0%

Table 3. The performance of single pass training with different com-
bination of M-steps for GDFT and BMMI. The experiment is per-
formed on TransTac Jun08 Open set.

Although we only performed one M-step for each EM iteration
for GDFT in the experiment shown in figure 1, we tried the recur-
sive update for GDFT as well. Table 3 shows the results of using
different ways to combine GDFT and BMMI for single-pass train-
ing. When we use the ML model as the acoustic model, we observe
GDFT can benefit from multiple M-steps. However, when we use
the BMMI model (M=4) as the acoustic model, multiple M-steps
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for GDFT would degrade the performance. This result is reasonable
since when we train the model and the feature transforms jointly us-
ing single-pass training, BMMI is trained on the untransformed data,
while GDFT assumes the acoustic model is the ML model. Hence,
the mismatch becomes greater when we perform the recursive up-
date. For single-pass training, we found that the best setup is one
M-step for GDFT and four M-steps for BMMI.

#iters Jun08open Nov08open
ML - 37.0% 35.2%

BMMI 4 32.6% 30.6%
fMMI→BMMI 4+4 31.8% 30.0%
GDFT→BMMI 4+4 31.9% 30.0%
BMMI(M=4) 1 33.2% 31.3%
GDFT(M=1) 1 32.5% 31.0%
+BMMI(M=4)
GDFT(M=1) 2 32.0% 30.5%
+BMMI(M=2)

Table 4. The WER of the Iraqi ASR system on the Jun08 and the
unseen Nov08 open sets.

#iters dev07 dev09 eval09 dev10
ML - 13.7% 20.4% 15.1% 16.5%

BMMI 4 11.7% 18.6% 13.3% 14.6%
BMMI(M=4) 1 12.0% 18.6% 13.4% 14.7%
GDFT(M=1) 1 11.7% 18.5% 13.4% 14.6%

+BMMI(M=4)

Table 5. The WER of the Vow 1100hrs 3-pass system on the GALE
dev07/09/10 and eval09 test sets.

Table 4 and 5 show the performance of single-pass discrimi-
native training on the Iraqi and the MSA speech recognition sys-
tems for different test sets. These tables also show the number of
EM iterations used for different training procedures. The time re-
quired for each EM iteration for different algorithms is available in
table 2. In sum, the results are consistent with the first experiment,
which single-pass training using GDFT and fast EBW algorithm can
achieve the performance of regular full BMMI training. If we allow
two passes on the data, the performance of our proposed method is
very close to the full fMMI and BMMI training.

5. CONCLUSION AND FUTURE WORK

We demonstrated how to combine our proposed recursive EBW al-
gorithm and GDFT to achieve single-pass discriminative training.
By processing the data only once, our proposed training procedure
can achieve around 80% of the improvement available from full dis-
criminative training. If we allow to process the data twice, we can
obtain almost all of the improvement. This training procedure speeds
up the process for building a speech recognition system, and enables
us to build larger systems if data is available.

For the future work, we will explore online methods for dis-
criminative training. Online methods for speech recognition are
often applied on speaker adaptation for incremental improvement.
For discriminative training, researchers may adopt online methods
only when the optimization is performed using gradient based meth-
ods [10]. While the BW and EBW algorithms are designed to max-
imize an objective function over a batch of data and it may not help

online training, we can try to exploit the regularization of EBW to
perform incremental training. By combining the multiple updates
strategy used by single-pass discriminative training, we may achieve
more improvement by only processing the data once.

For discriminative training, we will continue to explore how to
incorporate more information for GDFT. In this paper, we found that
the performance of GDFT is comparable to fMMI, but we believe
there is still room to improve GDFT. For example, the current im-
plementation only uses context features, but it can also use posterior
features like fMMI/MPE and RDLT. In sum, if GDFT can be im-
proved, it will also help the performance of single-pass discrimina-
tive training.
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