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ABSTRACT
This work focuses on a comparative study of discriminative training
using non-uniform criteria for cross-layer acoustic modeling. Two
kinds of discriminative training (DT) frameworks, minimum classi-
fication error like (MCE-like) and minimum phone error like (MPE-
like) DT frameworks, are augmented to allow the error cost embed-
ding at the phoneme (model) level respectively. To facilitate this
comparative study, we implement both augmented DT frameworks
under the same umbrella, using the error cost derived from the same
cross-layer confusion matrix. Experiments on a large vocabulary
task WSJ0 demonstrated the effectiveness of both DT frameworks
with the formulated non-uniform error cost embedded. Several pre-
liminary investigations on the effect of the dynamic range of error
cost are also presented.

Index Terms— speech recognition, discriminative training,
non-uniform error cost, cross-layer acoustic modeling

1. INTRODUCTION

Motivated by the remarkable successes of the most popular discrim-
inative training (DT) methods, i.e., maximum mutual information
(MMI)[1], minimum classification error (MCE)[2] and minimum
phone/word error (MPE/MWE)[3], various contributions and sev-
eral promising enhancements have been made[4]. When employing
DT in many specific scenarios, however, we usually encounter a sit-
uation we call cross-layer acoustic modeling in that the model dis-
crimination is often at the phoneme (model) level, while the system
performance is measured at the word level (eg., WER). One issue
arises from the situation is how to formulate the detriment (error
cost) of the model errors to the system which is often measured at a
higher level as opposed to the uniform treatment of the error cost in
most current DT methods. This also gives rise to another issue, how
to augment the current popular DT frameworks to be amenable for
the error cost embedding. Both merit further investigation.

Since these two issues rarely invite scrutiny among the DT lit-
erature, we have explored both in our previous work. The non-
uniform criteria for the DT is first initiated in [5] and then extended
in [6][7][8]. As the MCE DT method aims to the direct minimiza-
tion of the empirical errors with its original formulation based on the
Bayes decision theory, it has been employed to demonstrate the non-
uniform criteria for the cross-layer modeling. Meanwhile, with their
approximations for incorporating the Levenshtein distance into the
optimization, MPE-like DT methods have become popular. It would
then be meaningful to compare the two: MCE with the non-uniform
error cost and MPE with the non-uniform error cost.

In this work, we extend both the MPE-like and MCE-like
DT frameworks to allow the error cost embedding at the model

(phoneme) level, forming a comparative study of the DT using non-
uniform criteria. To facilitate this comparative study, we put both
under the same umbrella, using the error cost derived from the same
cross-layer confusion matrix. Some preliminary investigations on
the effect of the dynamic range of error cost are also presented.
The remainder of this paper is organized as follows: The MPE-like
and MCE-like DT framework are extended to allow the error cost
assignment in Section 2 and Section 3 respectively. Section 4 gives
an illustration of cross-layer error cost formulation. Experiments
and results are reported in Section 5.

2. NON-UNIFORM ERROR MPE

2.1. MPE-like DT framework

The MPE-like DT methods, including MMI and MPE/MWE, formu-
late the accuracy-based objective functions which we want to maxi-
mize during optimization. For MPE/MWE, it is

FMPE(Λ) =
R∑

r=1

∑
W ′

Pα
Λ (Xr|W ′)P β(W ′)Acc(W ′,Wr)∑

W Pα
Λ (Xr|W )P β(W )

, (1)

where Xr and Wr are the rth training token and its label transcrip-
tion, and W ′, W are the hypothesized transcriptions selected from
the hypothesis and evidence spaces respectively. PΛ(Xr|W ) and
PΛ(W ) denote the acoustic and language models with their scaling
factors α and β respectively. Acc(·, ·) is the accuracy metric func-
tion which involves calculating the Levenshtein distance between
two word sequences. The objective functions of MPE-like DT meth-
ods are optimized iteratively via the auxiliary function with the fol-
lowing unified form:

Q(Λ,Λ′) = Qnum(Λ,Λ′)−Qden(Λ,Λ′) +Qsm(Λ,Λ′). (2)

Here Qnum and Qden are the auxiliary functions for the standard
Baul-Welch estimation which actually are variational bounds derived
from the Jensen Inequality. To compensate the negated term Qden

which voilates the log-concave property, the smoothing term Qsm is
added to guarantee the effectiveness of the whole auxiliary function
in Eq. (2), for more specific forms, consult [3].

2.2. MPE extension for error cost embedding

Based on the accuracy-based form of the MPE-like objective func-
tion alone, it seems intractable to bring in the non-uniform error
cost. Specifically, maximizing the auxiliary function in Eq. (2), the
generic extended Baul-Welch (EBW) re-estimation formula can be
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written in the following form (without I-smoothing),

μ̂jm =

∑R
r=1

∑Tr
t=1(L

numr
jm (t)− Ldenr

jm (t))xr
t +Djmμjm∑R

r=1

∑Tr
t=1(L

numr
jm (t)− Ldenr

jm (t)) +Djm

, (3)

Σ̂jm =

∑R
r=1

∑Tr
t=1(L

numr
jm (t)− Ldenr

jm (t))xr
tx

rT
t +DjmGsm

jm∑R
r=1

∑Tr
t=1(L

numr
jm (t)− Ldenr

jm (t)) +Djm

− μ̂jmμ̂Tjm, (4)

where

Gsm
jm = Σjm + μjmμTjm, (5)

xr
t is the tth frame of the training token Xr . Djm is the smoothing

factor derived from Qsm in Eq. (2). μjm and Σjm denote the Gaus-
sian mean vector and covariance matrix for state j and mixture m
of the corresponding HMM. The keys in Eq. (3) and Eq. (4) are the
calculation of Ljm(t) and the determination of the smoothing fac-
tor Djm. For MMI, Ljm(t) is the occupancy probability for certain
state and mixture,

Ljm(t) = γjm(t), (6)

which can be computed by performing the forward-backward algo-
rithm on the decoded phoneme/word lattice and then the correspond-
ing HMM. For MWE/MPE, Ljm(t) has the following form:

Ljm(t) = γjm(t)|Acc(q)−Acc|. (7)

Acc and Acc(q) are the average phoneme/word accuracy over all hy-
pothesized transcriptions and those passing through the correspond-
ing phoneme q respectively. They can also be approximated in a
forward-backward fashion while simultaneously accumulating the
corresponding phoneme q’s local accuracy, which is defined as,

PhoneAcc(qi) = max
qj∈J

{ −1 + 2e(qi, qj) if qi = qj
−1 + e(qi, qj) if qi �= qj

}
, (8)

where qj and qi are the reference phoneme and the hypothesis
phoneme respectively. e(qi, qj) is the relative frame overlap rate to
qj . J corresponds to the reference phoneme set at certain frame,
which allows the references having boundary variations. The local
accuracy defined in Eq. (8), with its value ranging from −1 to 1,
utilizes the frame overlapping between the hypothesis and the ref-
erence phoneme to measure the accuracy contributions of the local
phonemes. In order to take into account the non-uniform error cost
of various phonemes, we modify the local phoneme accuracy in a
form of the negated error to allow the error cost embedding, let
εij be the error cost of misrecognizing the phoneme qj to qi, as
will be seen below, this modification borrows some of the essential
components in the MCE formulation,

PhoneAcc(qi) =

{
0 if qi = qj

−εij · �{dij} if qi �= qj

}
. (9)

Here �(·) is the sigmoid function and dij is defined as,

dij = −gΛ(Xt(qi), qj) + gΛ(Xt(qi), qi), (10)

where t(qi) is the frame interval of the qi, g(Xt(qi), qi) is the dis-
criminant function,

gΛ(Xt(qi), qi) = logPΛ(Xt(qi)|qi), (11)

3. NON-UNIFORM ERROR MCE

3.1. MCE-like DT framework

MCE-like DT methods aim at the direct minimization of the empir-
ical error. The original MCE DT method can be summarized in the
following equations,

gΛ(Xr,W ) = logPα
Λ (Xr|W )P β

Λ (W ), (12)

dΛ(Xr) = −gΛ(Xr,Wr)+log

⎡
⎣ 1

|W |
∑

W �=Wr

exp[gΛ(Xr,W )]η

⎤
⎦

1
η

.

(13)
Through this section we use the similar notations as in Eq. (1). With
proper smoothing using the sigmoid function, the objective function
is formulated as,

LΛ =

R∑
r=1

�(dΛ(Xr)). (14)

In the original MCE methods, the model parameters are opti-
mized using the gradient probabilistic descent (GPD)[9], in which
the gradient of the objective function in Eq. (14) is approximated by
a gradient at a single training sample,

Λ′ = Λ− μGPD · ∇�(dΛ(Xr)) r = 1, · · · , R, (15)

where μ is the step size. Also the GPD can be implemented in a
batch mode, which is the standard gradient descent (GD) algorithm,

Λ′ = Λ− μGD ·
R∑

r=1

∇�(dΛ(Xr)). (16)

The gradient at a single training sample is given by,

∇�(dΛ(Xr)) =

Tr∑
t=1

γ�(dΛ(Xr))[1− �(dΛ(Xr))]

(−γWr
jm (t) + γW �=Wr

jm (t))
∂ logℵjm(xr

t ,Λ)

∂Λ
, (17)

where ℵjm(xr
t ,Λ) is the corresponding Gaussian, and the γWr

jm (t)

and γW �=Wr
jm (t) are the model/mixture occupancy probability among

the label and hypothesized transcriptions respectively which also can
be approximated using a 0-1 indicator function determined by the
Viterbi alignment.

3.2. MCE extension for error cost embedding

For the MCE-like DT methods, the error cost embedding is more
intuitive. Since the original string-based MCE method manipulates
the minimization of the empirical errors at the string level, for the
error cost embedding at the phoneme (model) level, we extend the
discriminant functions as follows,

gΛ(X
n
r , q) = log

∑
{W ′∈W |W ′(n)=q}

Pα
Λ (Xr|W ′)P β

Λ (W
′). (18)

The summation is over those hypothesis W ′ with its nth phoneme
identity being q. The misclassification measurement is then given
by,

dΛ(X
n
r , qj , qi) = −gΛ(Xr, qj) + max

qi �=qj
gΛ(Xr, qi), (19)
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the max operation is over the hypothesis phonemes selected from
the decoded lattice (word graph) at the corresponding time interval
since it is prohibitive to enumerate all the other models in a large
vocabulary task. Then the ultimate objective function with the error
cost embedded is formulated as,

LΛ =

R∑
r=1

Nr∑
n=1

�(dΛ(X
n
r , qj , qi)) · εij · 1[Wr(n) = qj ]. (20)

With the error cost embedded, the optimization procedure will be
more vulnerable without the regulation of the step size. In this work,
we will use GD as the optimization method for the MCE extension,
in which the step size is determined according to [10].

4. CROSS-LAYER ERROR COST FORMULATION

So far we extend both the MPE-like and MCE-like DT methods to
allow the error cost embedding at the model (phoneme) level. To
illustrate the cross-layer modeling, we give one possible way to for-
mulate the non-uniform error cost εij .

With the WER as the goal of minimization, to investigate how
certain type of the phoneme errors would raise the word errors in a
cross-layer fashion, we first define the cross-layer confusion matrix.
Each entry Cij of the cross-layer confusion matrix is formed in the
following way: For each word in the lexicon, we pick up one arbi-
trary phoneme qj from its pronunciations, then swap it with another
one qi and form a new pronunciation. The new formed pronuncia-
tion is searched over all other words among the whole lexicon, the
entry Cij is the number of the matched pronunciations. The ratio-
nale of deriving the error cost from the cross-layer confusion matrix
is that the phoneme error cost with respect to word errors should be
proportional to the number of words the original one may change to
after its phoneme error occurs. Although a more solid formulation of
the cross-layer confusion matrix would incorporate the uneven word
prior distribution, i.e., larger mass should be put on those phonemes
belonging to more frequent words accordingly, for simplicity, we
will treat each word in the lexicon uniformly when forming the con-
fusion matrix.

To investigate the value of Cij in the real scenario, we generate
a cross-layer confusion matrix from a lexicon, which is drawn from
the SI-84 training set of WSJ database with vocabulary size of 8919.
The phoneme set we use is the TIMIT 39 monophonemes set, so
the size of the confusion matrix is 39 × 39. However we find that
it would be problematic if we directly adopt the Cij as the error
cost due to its dynamic range in which the lowest value is 0 while
some high values are beyond 200, which will be too aggressive for
the parameters optimization. Meanwhile, it seems unlikely that the
entry with the value of 100 truly carries 100 times the significance of
the entry with value of 1. Obviously, we need to control the dynamic
range of the εij , thus the following scaling is used,

εij = ln(e+
Cij

η
), (21)

where e guarantees the error cost is greater or equal to 1, η is to
control the dynamic range of the error cost.

Here we want to emphasize the following: Deriving the error
cost from the confusion matrix is just one way, but not the only
way. The error cost formulation synergistically depends on the sys-
tem evaluation measure, thus the cost may be introduced arbitrarily
by the designer; The issue of dynamic range has a lot to do with
the dispersion characteristics of the data, so it may be impossible to
estimate a prior for the value of η in Eq. (21), which needs to be
determined empirically.

5. EXPERIMENTS

We evaluate both kinds of the extended DT methods with the formu-
lated cross-layer error cost embedded on the WSJ0 LVCSR database.
The training corpus is the SI-84 set, which is the same as the one we
generate the cross-layer confusion matrix from in Section 4, with
7133 utterances from 84 speakers and the test set is the standard
Nov92 with 330 utterances from 8 speakers. The baseline system is
built following the recipe (http://www.inference.phy.cam.ac.uk/kv227/htk/)
for WSJ database using the Hidden Markov Model Toolkit(HTK).
Cross-word tri-phone models with a total number of 2750 tied-
states are trained, which are represented by 3-state strict left-to-right
HMMs with each state having 8 mixture Gaussian components. The
input feature is 12MFCCs + energy, and their first and second order
time derivatives. The WER of the baseline system is 7.14% after
5 iterations with maximum likelihood estimation (MLE) using a
standard bi-gram language model.

5.1. Non-uniform MPE-like method

For the MPE-like method with the formulated error cost embedded,
we use the regular MPE (i.e., in which the local accuracy is defined
in Eq. (8)) as the state-of-the-arts. While for the extended MPE-like
DT methods, the η is first set to ∞ to verify the effectiveness of the
extended methods, which is actually the uniform case. Then the η
is set to 1, 2 and 3. For each case, we update the model parameters
using EBW in 10 iterations. As mentioned in Section 2, one key
parameter in EBW is the smoothing factor Djm. Although Djm can
be theoretically determined using an upper bound derived in [11],
it still can be approximated using the following heuristics as in the
original MMI and MPE[12],

Djm ≈ max

{
E

R∑
r=1

Tr∑
t=1

Ldenr
jm (t), 2Dmin

jm

}
, (22)

where Dmin
jm is the minimum value to guarantee the covariance matrix

positive definite. I-smoothing is also employed in the experiments,
in which τ is set to 200 according to [13]. The results of WER in
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Fig. 1. WER of MPE extensions with the error cost embedded

each case during 10 iterations are shown in the Fig. 1. The extended
methods almost outperform regular MPE during 10 iterations. We
also list the best result of each case during 10 iterations and their
relative enhancements to the baseline in table 1, which shows the
non-uniform MPE with the error cost embedded in the case of η = 1
achieves the best results, about 15% relative improvement.
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Table 1. Relative Improvement of Non-uniform MPE Over Baseline

Method WER Relative Improvement

MLE 7.14% N/A

Regular MPE 6.31% 11.62%

Non-uniform MPE, η = ∞ 6.18% 13.45%

η = 1 6.09% 14.71%

η = 2 6.18% 13.45%

η = 3 6.28% 12.04%

Table 2. Relative Improvement of Non-uniform MCE Over Baseline

Method WER Relative Improvement

MLE 7.14% N/A

Non-uniform MCE, η = ∞ 6.48% 9.24%

η = 1 6.39% 10.50%

η = 2 6.46% 9.52%

η = 3 6.44% 9.80%

5.2. Non-uniform MCE-like method

For the MCE-like method with the formulated error cost embedded,
we implement the extended MCE methods with the values of η set
to ∞,1, 2 and 3 respectively. Since the cross-layer confusion matrix
is based on the monophonemes, the context of the label and hypoth-
esis triphones used in both the non-uniform MPE and MCE will first
be striped to obtain the value of εij . For those triphones sharing
the same monophone with the different context, the εij is set to 1.
For each case, we update the model parameters using GD in 10 itera-
tions. According to [10], the step size μ is set utilizing a factor which
can be regarded as the counterpart of Djm. In this work, the factor
will be set using the same heuristic in Eq. (22). As shown in Fig. 2,
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Fig. 2. WER of MCE extensions with the error cost embedded

the WER of the extended methods with the non-uniform error cost
embedded is almost less than the uniform case during 10 iterations.
We also list the best results of each case during 10 iterations and
their relative enhancements in table 2, which shows the non-uniform
MCE with the error cost embedded in the case of η = 1 achieves the
best results with 10.5% relative enhancement.

5.3. Discussions

In the experiments of the MPE-like methods, although the best re-
sults of the extended methods are better than the ones of regular

MPE, from the Fig. 1, there exist larger fluctuations in the extended
methods when the error cost is embedded (i.e., η = 1, 2, 3). This is
probably because we still use the same heuristic to set the values of
Djm in the EBW, which may need further modifications when the
error cost is embedded. As shown in Fig. 2, the WER of the MCE-
like extended methods tends to increase during the second half of
the iterations. Since the η is set to a constant during the iterations,
whether it can be adaptively determined in the later iterations when
all the training samples are observed in the previous iteration. We
leave both issues in the future work.

6. CONCLUSION

In this paper, we form a comparative study of DT using non-uniform
criteria for cross-layer acoustic modeling. Two kinds of DT frame-
works, MCE-like and MPE-like DT frameworks are extended to al-
low the cross-layer error cost embedding at the phoneme (model)
level. Then the two kinds of DT frameworks are rendered under
the same umbrella, with the same formulation of the non-uniform
error cost derived from the cross-layer confusion matrix. Experi-
ments are conducted to show the effectiveness of the both extended
frameworks with the error cost embedded. The effects of the dy-
namic range of the error cost are also preliminarily investigated. We
will leave more theoretical details related to the effects of the non-
uniform error cost on the resultant models in the future work.
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