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ABSTRACT

Recently, we proposed an i-vector approach to acoustic sniffing for
irrelevant variability normalization based acoustic model training in
large vocabulary continuous speech recognition (LVCSR). Its effec-
tiveness has been confirmed by experimental results on Switchboard-
1 conversational telephone speech transcription task. In this paper,
we study several discriminative feature extraction approaches in i-
vector space to improve both recognition accuracy and run-time effi-
ciency. New experimental results are reported on a much larger scale
LVCSR task with about 2000 hours training data.

Index Terms— i-vector, irrelevant variability normalization,
discriminative feature extraction

1. INTRODUCTION

Recently, a so-called i-vector approach [2] was proposed to extract a
low-dimensional feature vector from a speech segment to represent
speaker information, which has been successfully applied to speaker
verification and become popular in speaker recognition community.
In [8], an i-vector based approach was used for acoustic sniffing in ir-
relevant variability normalization (IVN) based acoustic model train-
ing for large vocabulary continuous speech recognition (LVCSR)
(e.g., [6, 11]). In [12], a new i-vector approach was proposed by
using a full factor analysis model with a residual term. Compared
with the traditional i-vector approach, unfortunately only minor im-
provement in recognition accuracy was achieved when it was applied
to acoustic sniffing for IVN-based acoustic model training. In [12],
we also studied the effectiveness of using LDA (linear discriminant
analysis) for i-vector transformation and dimension reduction, and
promising results were achieved on Switchboard-1 conversational
telephone speech transcription task. In this paper, we continue the
above study by investigating two new discriminative feature extrac-
tion approaches based on minimum classification error (MCE) train-
ing and comparing their effectiveness with the LDA approach for
i-vector transformation and dimension reduction. New experimental
results of IVN-based acoustic model training are also reported on a
much larger scale LVCSR task with about 2000 hours training data.

This work was done while Yu Zhang and Jian Xu were interns in Mi-
crosoft Research Asia, Beijing, China.

2. I-VECTOR APPROACH TO ACOUSTIC SNIFFING FOR
IVN-BASED TRAINING

2.1. Raw i-Vector Extraction

In [8, 12], two approaches were proposed to extract anF -dimensional
i-vector from a speech segment to represent acoustic information
irrelevant to phonetic classification. In this study, we use the tradi-
tional i-vector approach as described in [8] because it has a lower
computational complexity yet performs only slightly worse in recog-
nition accuracy than the new i-vector approach in [12]. Readers are
referred to [8] for technical details.

2.2. Discriminative Feature Extraction in i-Vector Space

If metadata (e.g., speaker ID in our experiments) for each speech
segment is available, this information can be used (e.g., each speaker
ID can be used as a class label in our experiments) to train an F1×F
linear transform matrix W , which can be used to transform each raw
i-vector into a lower dimensional (i.e., F1 ≤ F ) yet more discrimi-
native feature space.

2.2.1. LDA based Feature Extraction

There are many ways to estimate the linear transformation W for
discriminative feature extraction (DFE) and/or dimension reduction.
One traditional way is to use LDA. As we demonstrated in [12],
LDA-based i-vector transformation and dimension reduction indeed
brings recognition accuracy improvement. However, when a cosine
measure is used to measure the similarity between two transformed
i-vectors, it is inconsistent with the underlying Euclidean metric used
in LDA approach. Naturally, we want to know whether a more pow-
erful DFE method could further improve the final speech recognition
results. This is actually the main motivation of this study.

2.2.2. MCE based Discriminative Feature Extraction

In literature, many DFE methods based on MCE training have been
proposed and studied. One example is the discriminative metric de-
sign (DMD) approach proposed in [7], which we used to develop
our specific MCE-based DFE methods for nearest prototype classi-
fiers using Euclidean distance based dissimilarity measure and co-
sine similarity measure, respectively. To the best of our knowl-
edge, no study has been reported on the MCE-based DFE for the
prototype-based classifier with cosine similarity measure.

Let’s consider a speaker classification problem using an utterance-
based i-vector. Suppose there are in total S training speakers denoted
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as a speaker set C = {1, . . . , S}, and for each training utterance
i, a speaker label ci ∈ C is available. An F -dimensional raw i-
vector wi can be extracted for i, and then transformed into a new
F1-dimensional feature vector by using an F1 × F linear transfor-
mation matrix W . A discriminant function can be defined for the
s-th speaker as gs(wi,W ), which enables the following speaker
classification rule for an unknown i-vector wi:

C(wi) = argmax
s

gs(wi,W ). (1)

A misclassification measure can be defined for each training i-vector
from the s-th speaker as

ds(wi,W ) = −gs(wi,W ) +Gs(wi,W ), (2)

where
Gs(wi,W ) = max

k,k �=s
gk(wi,W ). (3)

The loss function is then defined as:

ls(wi,W ) =
1

1 + exp(−γds + θ)
, (4)

where γ and θ are two control parameters. An empirical average loss
can then be defined on the training set as

L0(W ) =
1

N

∑
s

∑
i,ci=s

ls(wi,W ), (5)

where N is the total number of training utterances.
In this study, two types of discriminant function are studied. The

first one is based on Euclidean distance and defined as follows [7]:

geucs (wi,W ) = −
1

2
(wi − μs)

�
WW

�(wi − μs), (6)

where μs is the prototype parameter for the s-th speaker. In this
study, we used a fixed μs, which is the mean of the training raw
i-vectors for the s-th speaker, i.e.,

μs =
1

Ns

∑
i,ci=s

wi, (7)

in which Ns is the total number of utterances of speaker s.
Another discriminant function is based on cosine similarity and

defined as follows:

gcoss (wi,W ) =
μ�

s

||μs||
·

W�wi√
w�

i WW�wi

, (8)

where μs is the prototype parameter for the s-th speaker calculated
as follows:

μs =
1

Ns

∑
i,ci=s

W�wi√
w�

i WW�wi

. (9)

Given the set of training i-vectors, the i-vector transform W can
be estimated by minimizing L0(W ) with the following optimization
procedure:

Step 1: Initialize W as LDA transform. Set t = 0.

Step 2: Update W by fixing μs’s as follows:

W
t+1 = W

t + α
∂L0(W )

∂W
, (10)

where α is a learning rate. The derivative ∂L0(W )
∂W

is calculated for
each type of discriminant function as follows:

• for Euclidean distance

∂L0(W )

∂W
=

1

N

∑
s

∑
i,ci=s

γls(wi,W )(1− ls(wi,W ))

{
− (wi − μs)(wi −μs)

� + (wi − μk)(wi −μk)
�

}
W

• for cosine similarity

∂L0(W )

∂W
=

1

N

∑
s

∑
i,ci=s

γls(wi,W )(1− ls(wi,W ))

{
wi√

w�
i WW�wi

· (
μ�

s

||μs||
−

μ�
k

||μk||
)

−
w�

i W√
w�

i WW�wi

· (
μs

||μs||
−

μk

||μk||
)

wiw
�
i

w�
i WW�wi

W

}

where
k = argmax

k,k �=c

gk(wi,W
t) .

Step 3: When cosine similarity is used, update the prototype for
each speaker class by using Eq. (9).

Step 4: Repeat Step 2 and Step 3 until the decrease of L0(W ) is
smaller than a pre-specified threshold.

2.3. Acoustic Condition Clustering using i-Vectors

Given the set of raw or transformed (via LDA or MCE-DFE) training
i-vectors, we use a hierarchical divisive clustering algorithm, namely
LBG algorithm [4], to cluster them into multiple clusters. Either a
Euclidean distance is used to measure the dissimilarity between two
i-vectors, wi and wj , or a cosine measure is used to measure the
similarity between two i-vectors. In the latter case, we normalize
each i-vector to have a unit norm so that the cosine similarity can be
calculated simply as w�

i wj .
After the convergence of the LBG clustering algorithm, we

obtain E clusters of i-vectors with their centroids denoted as
c
(w)
1 , c

(w)
2 , . . . , c

(w)
E , respectively. Then the speech segments in

training set can be distributed to different clusters according to the
one-to-one relationship with the corresponding i-vectors. By doing
so, all the feature vectors from the same cluster will share a single
linear feature transform in IVN-based acoustic model training (to
be explained in the next subsection) and the total number of feature
transforms equals the number of acoustic conditions.

2.4. i-Vector Approach to Acoustic Sniffing for IVN-based
Training

As described in e.g., [6, 11, 8, 12], in IVN-based training, a set of
linear feature transforms along with a set of generic hidden Markov
models (HMMs) are trained using a maximum likelihood (ML) (e.g.,
[6]) and/or discriminative training (DT) (e.g., [11]) criterion. The
feature transforms are used to normalize the irrelevant variabilities
of different acoustic conditions. As Fig. 1 shows, given a speech
segment (e.g., several frames of speech, an utterance, or several
utterances), a so-called “acoustic sniffing” module is responsible
for detecting the corresponding acoustic condition and choosing the
most appropriate transform(s) accordingly. In the recognition stage,
given an unknown speech segment, the “acoustic sniffing” module is
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Fig. 1. An illustration of IVN-based framework for acoustic model-
ing, training and adaptation.

used again for choosing the pre-trained IVN transform(s). The trans-
formed feature vector sequence is then decoded using a conventional
LVCSR decoder. After the first-pass recognition, unsupervised adap-
tation can be performed to adapt the selected feature transform(s).
Therefore, an improved recognition accuracy can be achieved in the
second-pass decoding.

In this study, the following feature transformation (FT) function
is used:

xt = F(yt;Θ) = A
(e)

yt + b
(e) (11)

where yt is the t-thD-dimensional feature vector of the input feature
vector sequence Y ; xt is the transformed feature vector; e is a label
(transform index) informed by the “acoustic sniffing” module for the
D×D nonsingular transformation matrix A(e) and D-dimensional
bias vector b(e); and Θ = {A(e), b(e)|e = 1, 2, · · · , E} denotes
the set of feature transformation parameters with E being the total
number of acoustic conditions as described in the previous subsec-
tion.

In IVN-based framework, the acoustic sniffing module is essen-
tial for both training and recognition. As mentioned previously, in
[8, 12], the i-vector based approach was used for acoustic sniffing
and promising results were achieved. In this study, we compare the
effectiveness of the newly proposed MCE-based DFE methods with
the traditional LDA transformation in this context. Given a speech
segment Y , i-vector based acoustic sniffing can be done as follows:

Step 1: Extract an i-vector wi from Y as described in [8].

Step 2: Apply W for feature transformation (via LDA or MCE-
DFE) if applicable. Further normalize the i-vector to have a
unit norm if cosine similarity measure is used. Let’s use ŵ to
denote the final transformed i-vector.

Step 3: Classify the i-vector ŵ into an acoustic condition, e, as fol-
lows:

• If Euclidean distance is used as a dissimilarity measure,

e = argmin
l=1,2,...,E

||ŵ − c
(w)
l ||;

• If cosine similarity measure is used,

e = argmax
l=1,2,...,E

ŵ
�
c
(w)
l .

The pre-trained linear feature transform for IVN based train-
ing from the corresponding acoustic condition e will be used
for feature transformation.

The same acoustic sniffing procedure is used in both training and
recognition stages. It is noted that in the second case of Step 3 of

the above procedure, if i-vector ŵ and centroids c
(w)
l ’s have been

normalized to unit norm, it can be proven that the above two deci-
sion rules will give the same result. Therefore the first decision rule
can always be used in run-time for more efficient acoustic sniffing
because a partial-distance based technique can be used to eliminate
unnecessary computations.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

Two sets of experiments were performed in this study. The first one
was done on a Switchboard-1 conversational telephone speech tran-
scription task [3] with about 300 hours training data to study care-
fully the algorithmic issues of the proposed approach. The experi-
mental setup is the same as in [11, 8].

The second experiment was performed on a “Jumbo” task with
a training set consisting of about 300 hours training speech from
Switchboard-1 corpus and about 1,700 hours training speech from
Fisher English corpus (part 1 and 2) [1]. The Spring 2003 NIST
rich transcription set (RT03S) with about 6.3 hours conversational
telephone speech was used as the testing test. For front-end fea-
ture extraction, we used 52-dimensional PLP E D A T (in HTK’s
terminology [10]) features with mean and variance normalization.
HLDA transformation was then applied to reduce the feature vector
dimension to 39. For acoustic modeling, we used phonetic decision
tree based tied-state triphone GMM-HMMs with 18,000 states and
72 Gaussian components per state. Our recognition vocabulary con-
tained 47,633 unique words. The pronunciation lexicon contained
multiple pronunciations per word with a total of 58,393 unique pro-
nunciations. A trigram language model, which was trained on the
2000-hour Jumbo-corpus transcripts and interpolated with a written-
text trigram, was used in decoding. All of the recognition experi-
ments were performed with a Microsoft in-house decoder as in [11,
8] and the results were evaluated by using the NIST Scoring Toolkit
SCTK [5].

The settings of relevant control parameters are as follows:
The number of UBM-GMM components for i-vector extraction
K = 1, 024 [8]; The dimension of the raw i-vectors F = 600 for
Switchboard-1 and F = 400 for Jumbo task; The i-vector dimension
after LDA or MCE-DFE F1 = 100; For IVN-based MMI training
[11], the learning constant EConst = 2, i-smoothing τ = 100,
and acoustic scaling factor κ = 1/12; For acoustic sniffing, 128
acoustic conditions were clustered, therefore E = 128; For MCE
training, the control parameters of the sigmoid function are γ = 32
and θ = 0.

To handle large-scale training data, the tools for hyperparameter
estimation in i-vector extraction, LBG clustering and GMM train-
ing have been implemented based upon MSR Asia’s MPI-based ma-
chine learning platform [9]. This platform was developed on top
of Microsoft Windows HPC Server, and optimized for various ma-
chine learning algorithms including speech training. With this high-
performance parallel computing platform, experiments can be run
very efficiently for large-scale tasks.

3.2. Experimental Results

Table 1 gives a comparison of speaker classification errors by using
different DFE methods on Switchboard-I training set. It is quite clear
that using cosine similarity based discriminant function for speaker
classification and the corresponding MCE-DFE method (labeled as
“DFE (COS)”) achieves much lower error rate than that of using
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Table 1. Comparison of speaker classification errors by using differ-
ent DFE methods on Switchboard-I training set.

Measure LDA DFE (EUC) DFE (COS)

Euclidean 13.9% 12.7% N/A
Cosine 12.3% N/A 6.0%

Table 2. Comparison of different acoustic sniffing approaches for
IVN-based ML training by using recognition word error rate (WER
in %) on Switchboard-I task as performance metric. Our ML-trained
baseline system achieves a WER of 30.0%.

eval2000
Measure w/o trans. LDA DFE (EUC) DFE (COS)

Euclidean 27.3 26.5 26.7 N/A
Cosine 27.2 26.3 N/A 26.5

Euclidean distance based discriminant function and the correspond-
ing MCE-DFE method (labeled as “DFE (EUC)”). Both MCE-DFE
methods perform better than the LDA based DFE when the Eu-
clidean distance based discriminant function is used. Interestingly,
LDA based DFE with cosine similarity based discriminant function
performs slightly better than the “DFE (EUC)” case with the Eu-
clidean distance based discriminant function.

Table 2 gives a comparison of different acoustic sniffing ap-
proaches with different DFE methods for IVN-based ML training by
using recognition word error rate (WER in %) on Switchboard-I task
as performance metric. Unfortunately, MCE-DFE methods failed to
outperform the LDA method, yet all the DFE methods for i-vector
transformation and dimension reduction achieves better WER than
the cases without i-vector transformation (labeled as “w/o trans.”).
It is noted that reducing the dimension of i-vector from 600 to 100
via LDA or MCE-DFE methods does not degrade recognition accu-
racy.

Since using LDA transformation with cosine similarity mea-
sure in acoustic sniffing gives us the best recognition accuracy, we
used this setup for the set of experiments on “Jumbo” task. The
experimental results are summarized in Table 3. Our ML- and
MMI-trained baseline systems without IVN training achieved a
WER of 30.2% and 26.6% respectively. After ML- and MMI-based
IVN training but without using LDA for i-vector transformation, the
WERs are reduced to 28.8% and 25.8% respectively. This demon-
strates clearly the power of IVN training. After using LDA for
i-vector transformation and dimension reduction (from 400 to 100),
the WERs of IVN-based ML training and MMI training are further
reduced to 28.2% and 25.4% respectively.

4. SUMMARY

In this paper, we have studied several discriminative feature extrac-
tion approaches in i-vector space and compared their effectiveness
for acoustic sniffing in IVN-based acoustic model training. New
experimental results are reported on “Jumbo” task with about 2000
hours training data. LDA-based i-vector transformation and dimen-
sion reduction plus using cosine similarity measure in acoustic sniff-
ing has improved both recognition accuracy and run-time efficiency,
therefore is the solution we recommended for others to use in prac-
tice.

Table 3. The effectiveness of using LDA for i-vector transformation
and dimension reduction (from 400 to 100) on “Jumbo” task, and
the relative error rate reduction against the ML baseline (FT: feature
transform in IVN training).

rt03
Method w/o LDA LDA

FT HMM WER(%) Rel.(%) WER(%) Rel.(%)

- ML 30.2 N/A N/A N/A
- MMI 26.6 11.9 N/A N/A

ML ML 28.8 4.6 28.2 6.6
ML MMI 25.8 14.6 25.4 15.9
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