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ABSTRACT

We propose a method for spectral enhancement of reverberant
speech based on inverting the modulation transfer function (MTF).
Using all-pole models of modulation spectra allows the linear pre-
diction inverse MTF (LP-IMTF) filter to exhibit a smooth frequency
response, and allows it to be implemented as a low-order IIR filter
in the modulation envelope domain. The proposed filter adapts to
current acoustic conditions without relying on explicit information
regarding reverberation time.

Additionally, the LP-IMTF framework allows for estimation of
useful side information, such as local signal-to-reverberation ratios
and band-specific reverberation times. As example applications, the
LP-IMTF system is applied to enhancement and speaker recognition
of reverberant speech, and significant performance improvements
are achieved.

1. INTRODUCTION

When observed in an enclosed environment, speech signals will gen-
erally experience distortion due to reverberation, which is caused by
multi-path propagation of sound from source to sensor. Human intel-
ligibility has been widely shown to degrade in the presence of rever-
beration [1], as has the performance of automated speech systems
such as automatic speech recognition (ASR) and speaker recogni-
tion [2]. It is therefore of interest to enhance spectra of reverberant
speech.

The concept of the modulation transfer function (MTF) is intro-
duced by Houtgast and Steeneken in [1] to characterize the acous-
tic channel encountered when observing speech within an enclosed
space. Specifically, they explore the effect of reverberation on the
modulation index of the intensity envelope for an input signal, and
the resulting effect on speech intelligibility.

In [3], Langhans and Strube aim to suppress acoustic distortion
by inverting the magnitude of the MTF in order to reshape the mod-
ulation spectrum of degraded speech. The inverse modulation trans-
fer function (IMTF) filter has since been explored as a means by
which to suppress the effects of adverse acoustic environments on
speech signals, thereby improving perceptual quality of resynthe-
sized speech [4],[5].
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In this paper, we propose a method for spectral enhancement of
reverberant speech. We discuss the modulation transfer function, and
its behavior for speech with convolutional distortion. We utilize all-
pole modeling of modulation spectra of clean and degraded speech
to derive the LP-IMTF filter, which adapts to current acoustic con-
ditions, and implement it as an IIR filter in the modulation envelope
domain. The proposed spectral enhancement method is applicable to
a variety of applications. In this study, it is applied to enhancement
and speaker recognition of reverberant speech. Aside from spectral
enhancement, the proposed framework provides useful side informa-
tion, namely frame-level signal-to-reverberation ratios (SRRs), and
frequency band-specific reverberation times.

This paper is organized as follows. Sec. 2 discusses the mod-
ulation transfer function and its behavior for speech with convolu-
tional distortion, and derives the proposed LP-IMTF filter. Sec. 3
discusses extraction of side information. Experimental results for
enhancement and speaker recognition are included in Sec. 4, and
Sec. 5 provides conclusions.

2. THE LINEAR PREDICTION INVERSE MODULATION
TRANSFER FUNCTION (LP-IMTF) FILTER

2.1. The Modulation Envelope Domain

A discrete speech signal observed in a reverberant environment can
be expressed as

y (n) =
∞X

l=0

h (l) x (n − l) (1)

where x (n) is the underlying clean speech and h (n) is the causal
room impulse response. Short-time spectral analysis of y (n) reveals
channel-specific trajectories of spectral magnitudes along time, i.e.
modulation envelopes. When applying short-time spectral analysis,
the relationship from (1) becomes difficult to express mathemati-
cally, and instead short-time spectra are approximated as [3],[6]

|Yk (m)| =
∞X

l=0

|Hk (l)| |Xk (m − l)| (2)

where Xk (m) and Yk (m) denote the short-time Fourier transforms
(STFTs) of x (n) and y (n), respectively. Hk (m) characterizes the
inter-frame effect of reverberation, and k and m refer to the channel
and time index, respectively. From (2), the effect of reverberation
along short-time spectral envelopes is modeled as a channel-wise
convolution. To capture the “smeared” nature typically observed in
spectrograms of reverberant speech, |Hk (m) | is generally defined
as a causal low-pass envelope. The decay rate of |Hk (m) | is then
related to reverberation time, which is commonly measured as t60,
i.e. the time required for h (n) to attenuate by 60 dB.
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2.2. The Modulation Spectral Domain

In the case of mild reverberation, when the room impulse response is
short in duration relative to the short-time analysis window, (2) can
be reduced to |Yk (m) | ≈ |Hk (0) ||Xk (m) |, which has been used
to motivate frame-based compensation techniques such as cepstral
mean and variance normalization (CMVN) [7]. However, for rever-
beration which is more severe, distortion in (2) is a function of past
short-time spectra, and frame-based algorithms may not be effective.
To compensate for such effects, we look to leverage the inter-frame
relationships of speech via the modulation spectrum and obtain an
enhanced short-time spectrum, |X̂k (m) |.

The modulation spectrum is the frequency decomposition of an
energy envelope extracted from a subband signal [8]. In this study,
we define the modulation spectrum as

MY,k (ω) =

∞X
m=−∞

|Yk (m)| exp (−jωm) (3)

with analogous terms defined for Xk (m) and Hk (m). Using (2)
and (3), the modulation spectrum of Yk (m) becomes

MY,k (ω) =
∞X

m=−∞

∞X
l=0

|Hk (l) ||Xk (m − l) | exp (−jωm)

=
∞X

l=0

|Hk (l)| exp (−jωl)

×

∞X
m=−∞

|Xk (m − l)| exp (−jω (m − l))

=MH,k (ω)MX,k (ω) (4)

revealing reverberation to induce a multiplicative distortion in the
modulation spectral domain.

2.3. The LP-IMTF Filter

As proposed by Langhans and Strube in [3], the modulation spec-
trum of a degraded signal can be reshaped by inverse filtering the
MTF. We aim to design an IMTF filter, Fk (ω), whose magnitude
frequency response is given by

|Fk (ω)| = |MH,k (ω)|−1 =

˛̨̨
˛MX,k (ω)

MY,k (ω)

˛̨̨
˛ (5)

Here, knowledge regarding |MY,k (ω) | can be extracted from the
observed speech signal, whereas the underlying |MX,k (ω) | is un-
known and must be learned from training data. We propose to use
all-pole models of these modulation spectra during implementation
of the IMTF filter. The motivation for this is three-fold:

• All-pole modeling provides smooth spectral transitions
within modulation spectra, avoiding rapid fluctuations gener-
ally encountered when using large DFTs. This is especially
important when determining the ratio of modulation spectra,
as in (5), since small values in the denominator can yield
large fluctuations in the resulting IMTF filter.

• All-pole modeling allows for modulation behavior to be
summarized by a small set of linear prediction coefficients.
|MX,k (ω) | can then be efficiently trained as a small number
of parameters.
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Fig. 1. Gain-normalized all-pole modulation spectra of example
speech in the presence of reverberation of varying degree, for the
frequency channel with center frequency 1500 Hz, and for P =6

• All-pole modeling allows for efficient implementation of the
IMTF filter in the modulation envelope domain as a low-order
IIR filter, as will be shown in (8)-(9). This avoids explicit
transformation into the modulation spectral domain.

The all-pole modulation spectrum of degraded speech is deter-
mined by analyzing the normalized modulation envelope autocorre-
lation function rY,k (τ ), defined as

rY,k (τ ) =
E{|Yk (m)| |Yk (m + τ )|}

E{|Yk (m)|2}
(6)

which is estimated from the short-time spectra of the observed
speech signal. Normalized autocorrelation coefficients are used
in (6) since long-term average channel gains can contain speaker-
specific information important for tasks such as speaker recognition,
and should therefore not affect the IMTF filter shape. From rY,k (τ ),
the linear prediction coefficients aY,k (l) and gain σY,k are extracted,
yielding the all-pole model

|MY,k (ω)|2 ≈
σ2

Y,k˛̨̨
1 −

PP

l=1
aY,k (l) exp (−jωl)

˛̨̨
2

(7)

where P is the prediction order. Analogous terms (rX,k (τ ),
aX,k (l), and σX,k) are defined for the clean modulation spec-
trum, and determined similarly, although rX,k (τ ) is learned from
training data.

As discussed in Sec. 2.2, the presence of reverberation can be
expected to affect the shape of |MY,k (ω) |. Fig. 1 provides gain-
normalized all-pole modulation spectra of example speech in the
presence of reverberation of varying degree. In this example, rever-
beration is added artificially to microphone interview speech from
the 2010 NIST-SRE, using a room impulse response generator based
on [9]. It can be observed in Fig. 1 that as the acoustic severity in-
creases, modulation spectra become increasingly low-pass.

Applying all-pole modulation spectra to (5) results in the pro-
posed LP-IMTF filter

|Fk (ω)| =

˛̨̨
˛̨̨σX,k

“
1 −

PP

l=1
aY,k (l) exp (−jωl)

”
σY,k

“
1 −

PP

l=1
aX,k (l) exp (−jωl)

”
˛̨̨
˛̨̨ (8)
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Fig. 2. Proposed IMTF filters for example speech in the presence
of reverberation of varying degree, for the frequency channel with
center frequnecy 1500 Hz, and for P =6

Fig. 2 illustrates the magnitude frequency response of the LP-IMTF
filter obtained for example speech in reverberation of varying degree.
It can be observed that the LP-IMTF solution is a bandpass filter in
the modulation spectrum. Further, as the acoustic severity increases,
the LP-IMTF filter exhibits increasing filter depth.

Since (5) does not account for phase, there exist multiple solu-
tions Fk (ω) which adhere to this constraint. One such solution can
be efficiently implemented by applying the inverse DTFT to the ex-
pression within the magnitude operator of (8), yielding a low-order
IIR filter in the modulation envelope domain. Further, this solution
is guaranteed to be minimum phase, and can therefore be expected
to match the causal nature of reverberation in the short-time spectral
domain. The solution is given by

˛̨̨
X̂k (m)

˛̨̨
=

σX,k

σY,k

 
|Yk (m)| −

PX
l=1

aY,k (l) |Yk (m − l)|

!

+
PX

l=1

aX,k (l)
˛̨̨
X̂k (m − l)

˛̨̨
(9)

Each frequency band of the observed short-time spectra is filtered
with (9) to obtain enhanced spectral components. To guarantee non-
negativity, processed spectral values must be floored. Additionally,
gain smoothing is applied along time and/or frequency axes to re-
duce nonlinear effects due to flooring.

3. EXTRACTION OF SIDE INFORMATION

Aside from providing enhanced spectra, the proposed LP-IMTF
framework allows for extraction of useful side information.

3.1. Local Speech-to-Reverberation Ratio

After enhancement, some short-time spectra can still be deemed un-
reliable due to low signal-to-reverberation ratio (SRR). For tasks
such as speaker recognition, such frames can be expected to offer
little discriminative power, instead potentially introducing confus-
ability. Therefore, unreliable frames can be dropped prior to recog-
nition. The LP-IMTF framework allows the frame-based a posteriori
SRR to be estimated using spectral subtraction

SRR (m) ≈

P
k |Yk (m)|2P

k
max

“
|Yk (m)|2 − |X̂k (m) |2, 0

” (10)

A hard threshold is set, and frame-dropping (FD) can be applied
accordingly.

3.2. Blind Estimation of Reverberation Time

For many applications, it may be of interest to infer the acoustic
severity of an observed reverberant speech signal. We propose a
method for blind estimation of reverberation time based on the LP-
IMTF filtering framework. In Fig. 2 it can be observed that the
LP-IMTF filter shape is related to reverberation time. Specifically,
the frequency response and spectral slope of the filter seem well-
correlated with t60 at certain modulation frequencies, eg. ω ≈ 1 Hz.
The spectral slope of the LP-IMTF filter is given by

∂ |Fk (ω)|2

∂ω
=

2

C2

X,k (ω)
(11)

× [CX,k (ω) (BY,k (ω)DY,k (ω) − AY,k (ω)EY,k (ω))

−CY,k (ω) (BX,k (ω) DX,k (ω) − AX,k (ω)EX,k (ω))]

where

AY,k (ω) = 1 −

PX
l=1

aY,k (l) cos (ωl) (12)

BY,k (ω) =
PX

l=1

aY,k (l) sin (ωl)

CY,k (ω) = A
2

X,k (ω) + B
2

X,k (ω)

DY,k (ω) =

PX
l=1

aY,k (l) l cos (ωl)

EY,k (ω) =
PX

l=1

aY,k (l) l sin (ωl)

with analogous terms defined for |Xk (m) |. We propose to estimate
reverberation time as a linear combination of samples of the LP-
IMTF frequency response and spectral slope

t̂60 =α +

|Ω|X
i=1

βi |Fk (ω)|2
˛̨̨
ω=ωi

+

|Ω|X
i=1

λi

∂ |Fk (ω)|2

∂ω

˛̨̨
ω=ωi

(13)

for some set of frequencies Ω. Here, α, βi’s, and λi’s can be trained
on reverberant development data using linear regression. In this
study, using Ω={1, 2, 5, 10, 20} Hz showed promising results. Fig.
3 illustrates results for estimation of reverberation time obtained on
reverberant speech using the discussed room impulse responses.

4. EXPERIMENTAL RESULTS

To assess the effectiveness of the LP-IMTF filtering framework,
it was applied to the task of speech enhancement of reverberant
speech. Enhanced spectra were combined with noisy phase, and
speech was synthesized via the overlap-and-add method. Table 1
provides results for enhancement of a three minute segment of re-
verberant speech created by concatenating TIMIT utterances and
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Fig. 3. Blind estimation of reverberation time: red points denote
estimates, and blue denotes the diagonal.

Table 1. Speech enhancement results on reverberant speech using
the proposed LP-IMTF filtering framework

t60 (seconds)
Algorithm 0.24 0.37 0.61 0.99

log-spectral distortion
Baseline 1.56 2.74 4.15 6.92
LP-IMTF 1.18 1.67 2.33 3.91

PESQ
Baseline 2.586 2.225 1.986 1.732
LP-IMTF 2.686 2.388 2.162 1.879

applying reverberation. Log-spectral distortion and perceptual eval-
uation of speech quality (PESQ) [10] are used as metrics. Table 1
shows the LP-IMTF filter to provide significant improvements in
speech quality.

Additionally, the LP-IMTF filter was applied as front-end pro-
cessing to the MIT Lincoln Laboratory Joint Factor Analysis (JFA)
speaker recognition system (see [11] for details). Experiments were
conducted on the short interview microphone data from the 2010
NIST-SRE corpus, which includes both male and female speakers,
with 6.2 K targets and 1.7 M non-targets. Calibration was performed
using development data from the 2008 NIST-SRE corpus. Reverber-
ation was artificially added to test cuts for a range of t60’s. (Note
that reverberation was added neither during enrollment, nor to de-
velopment data.) Table 2 provides results for speaker recognition of
reverberant speech using the LP-IMTF filter with P =6. Results are
reported in terms of equal error rate (EER) and the log-likelihood ra-
tio cost (Cllr) from [12]. It can be observed that LP-IMTF filtering
improves robustness of speaker recognition to reverberation across
the test conditions used, and frame-dropping further improves per-
formance in the more severe conditions. Future work includes using
estimated reverberation times to train acoustically matched speaker
recognition systems.

5. CONCLUSIONS

This paper has explored spectral enhancement of reverberant speech
based on inversion of the modulation transfer function. Using all-

Table 2. Speaker recognition results on reverberant speech using the
proposed LP-IMTF filtering framework and frame-dropping (FD)

t60 (seconds)
Algorithm clean 0.24 0.37 0.61 0.99

EER (%)
Baseline 5.89 8.47 11.38 16.31 25.58
LP-IMTF 5.39 7.55 9.24 12.63 20.26

LP-IMTF+FD 5.41 7.52 9.20 12.19 19.17

Cllr

Baseline 0.240 0.350 0.704 1.350 2.448
LP-IMTF 0.273 0.283 0.385 0.698 1.679

LP-IMTF+FD 0.284 0.288 0.365 0.623 1.519

pole models of modulation spectra, an efficient LP-IMTF filter is de-
rived which adapts to acoustic conditions. The LP-IMTF framework
allows for extraction of side information: local SRR and reverbera-
tion time. When applied to enhancement and speaker recognition of
reverberant speech, the LP-IMTF filter achieves significant improve-
ments in performance.
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