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ABSTRACT

In this paper, we propose a multichannel speech dereverberation and
separation technique which is effective even when there are multiple
speakers and each speaker’s transfer function is time-varying due
to fluctuation of the corresponding speaker’s head. For robustness
against fluctuation, the proposed method optimizes linear filtering
with non-linear filtering simultaneously from probabilistic perspec-
tive based on a probabilistic reverberant transfer-function model,
PRTFM. PRTFM is an extension of the conventional time-invariant
transfer-function model under uncertain conditions, and PRTFM can
be also regarded as an extension of recently proposed blind local
Gaussian modeling. The linear filtering and the non-linear filtering
are optimized in MMSE (Minimum Mean Square Error) sense dur-
ing parameter optimization. The proposed method is evaluated in a
reverberant meeting room, and the proposed method is shown to be
effective.

Index Terms— Dereverberation, Local Gaussian modeling,
Multichannel Wiener filter, Speech separation

1. INTRODUCTION

Dereverberation techniques are greatly required for communication
systems such as TV conferencing systems in larger meeting rooms,
because audio quality becomes severer in larger rooms due to re-
verberation. MINT theorem [1] is a major dereverberation tech-
nique with multiple microphones under the condition that the acous-
tic transfer functions between speech sources and microphones are
known. However, the acoustic transfer functions cannot be obtained
in advance. Therefore, many blind dereverberation techniques have
been studied [2][3][4][5][6]. One way to reduce reverberation of mi-
crophone input signal is the MINT inverse filtering by using the esti-
mated transfer function under time-invariant assumption of the trans-
fer function. However, this way is not good in communication sys-
tems which use distant microphones such as TV conferencing sys-
tems because the transfer function between a speech source and a mi-
crophone easily fluctuates due to movement of human head, human
body, and so on. To avoid performance-degradation in time-variant
cases, dereverberation techniques which utilize non-linear filtering
techniques such as spectral subtraction [2][3] have been proposed.
These non-linear filtering techniques are robust against fluctuation
of the transfer function at the expense of speech distortion. How-
ever, when fluctuation of the transfer function is small, the inverse
filtering is better than the non-linear filtering. Therefore, case-by-
case optimization for the non-linear filtering and the inverse-filtering
separately is one of practical issues.

In this paper, we propose a simultaneous optimization technique
of the non-linear filtering and the inverse-filtering from a probabilis-
tic perspective. Instead of the conventional time-invariant model,

we propose a novel probabilistic model for time-varying transfer
function, namely probabilistic reverberant transfer function model
(PRTFM). The optimization scheme under PRTFM is based on the
semi-blind local Gaussian modeling proposed by one of authors [8].
In the proposed method, the inverse filtering and the non-linear filter-
ing are optimized in MMSE (Minimum Mean Square Error) sense.
In addition to dereverberation, separation of multiple speakers can
be performed in the proposed method under the same framework.
By evaluating the proposed method in a real meeting room, the pro-
posed method is shown to be effective.

2. PROBLEM STATEMENT

2.1. Microphone Input Signal Model

In this paper, dereverberation is performed at time-frequency domain
with multiple microphones. The number of microphones is M . The
input signal is modeled in the time-frequency domain as follows:

xf,τ =
NX

n=1

L−1X
l=0

sn,f,τ−lan,f,τ,l, (1)

where f is frequency index, τ is frame index, L is the length of the
acoustic transfer function, N is the number of speech sources, sn,f,τ

is the n-th source signal, and an,f,τ,l is the time-varying acoustic
transfer function of the l-th tap between the n-th source and micro-
phones . The input signal is divided into the dereverberated part and
the late reverberation part as follows:

xf,τ =

D−1X
l=0

Af,τ,lSf,τ−l +

L−1X
l=D

Af,τ,lSf,τ−l, (2)

where D is the step length, Af,τ,l = [ a1,f,τ,l . . . aN,f,τ,l ],

and Sf,τ = [ s1,f,τ . . . sN,f,τ ]T (T is the operator for trans-
pose of a matrix/vector). The first term includes the direct path and
the early reverberation. The second term includes the late rever-
beration. The early reverberation does not have harmful effects for
human audition. Therefore, the first term of Eq. 2 is defined as the
dereverberated part, and goal is defined as extraction of each source
signal in the first term from only the microphone input signal.

2.2. Dereverberation techniques based on time-invariant transfer-
function model

In the conventional methods, dereverberation is performed based
on the MINT theorem [1] under time-invariant assumption for the
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acoustic transfer function. When an,f,τ,l is time-invariant, the mi-
crophone input signal xf,τ can be converted into the following equa-
tion [2][4]:

xf,τ =

D−1X
l=0

Af,lSf,τ−l +

L3−1X
l=D

Wf,lxf,τ−l, (3)

where L3 = L2 + L − 1, L2 is the tap-length of the inverse filter
of the acoustic transfer function, and Wf,l is a prediction filter from
xf,τ−l to xf,τ . A reasonable way of parameter estimation is the
maximum likelihood approach under the assumption that the proba-
bilistic distribution of the microphone input signal is Gaussian distri-
bution such as [4]. The log-likelihood function L for each frequency
bin is defined as follows:

L =
−1

2

˘ LTX
τ=1

(xf,τ−—x,f,τ )HV −1
x,f,τ (xf,τ−—x,f,τ )+log |Vx,f,τ |

¯
,

(4)
where LT is the number of the frames, H is the operator for the
Hermite transpose of a matrix/vector, —x,f,τ is the mean value of
xf,τ , and Vx,f,τ is the covariance matrix of xf,τ . —x,f,τ and Vx,f,τ

are modeled under time-invariant assumption of the acoustic transfer
function as follows:

—x,f,τ =

L3−1X
l=D

Wf,lxf,τ−l, (5)

Vx,f,τ =

NX
n=1

|sn,f,τ |2an,f aH
n,f . (6)

The model parameters are estimated based on an iterative method,
and separation of each source can be performed simultaneously [4].
However, when the time-invariant assumption is not valid, rever-
beration cannot be reduced sufficiently by the conventional MINT
based dereverberation techniques. We extend the conventional
method under the assumption that the acoustic transfer function is
time-varying.

3. PROBABILISTIC REVERBERANT
TRANSFER-FUNCTION MODEL (PRTFM)

For dereverberation and separation under the condition that the
acoustic transfer function is time-varying, we propose a probabilis-
tic reverberant transfer-function model (PRTFM). In this section, the
probabilistic density function of the microphone input signal in the
proposed PRTFM is derived under the time-varying assumption of
the acoustic transfer function.

At first, a new autoregressive model with the time-varying
acoustic transfer function is derived. The time-varying acoustic

transfer function Af,τ,l is modeled as Af,τ,l = Âf,l + ΔAf,τ,l ,

where Âf,l is the time-invariant part and the second term is the

fluctuation part. When there is no common zero in Âf,l, the MINT

inverse filter for Âf,l exists. The MINT inverse filter for Âf,l is

set to be B̂f,k. By multiplying the microphone input signal by the
MINT inverse filter, we can obtain the following equation:

Sf,τ =

L2−1X
k=0

Bf,kxf,τ−k −
L2−1X
k=0

Bf,k

L−1X
l=0

ΔAf,τ−k,l Sf,τ−k−l.

(7)

By substituting Sf,τ in the second term of Eq. 2, a new autoregres-
sive model for the microphone input signal can be obtained as fol-
lows:

xf,τ =

D−1X
l=0

Af,τ,lSf,τ−l +

2L3−2X
l=D

Wf,τ,lxf,τ−l + ›f,τ , (8)

where ›f,τ is the residual-error term, and this term can be neglected
when fluctuation ΔAf,τ,l is sufficiently small. We regard Wf,τ,l as
a probabilistic prediction matrix for the late reverberation. Eq. 8 is
a natural extension of the conventional autoregressive model (Eq. 3)
under the time-varying assumption.

Secondly, the probabilistic density function of the microphone
input signal is derived. When the expected value of the fluctuation
ΔAf,τ,l is 0, the expected value of Wf,τ,l, E[Wf,τ,l] (E is the
operator for the mathematical expectation), is equivalent to the time-
invariant prediction filter Wf,l in Eq. 3.
Mean value :

—x,f,τ =

2L3−2X
l=D

Wf,lxf,τ−l. (9)

For the covariance matrix modeling, we assume that fluctuation of
the probabilistic prediction matrix Wf,τ,l is stationary and mutually
independent for l, and each column vector of Wf,τ,l, Wf,τ,l,m, is
mutually independent for m. In consideration of non-stationary na-
ture of speech sources, the covariance matrix of each speech source
can be modeled by the local Gaussian modeling [7] as follows:

E[

D−1X
l=0

|sn,f,τ−l|2an,f,τ,la
H
n,f,τ,l] = vn,f,τ Rn,f , (10)

where vn,f,τ = E[
PD−1

l=0 |sn,f,τ−l|2] and Rn,f is the full-rank co-

variance matrix of each source and defined as
PD−1

l=0 E[an,f,τ,la
H
n,f,τ,l].

The covariance matrix of the microphone input signal is modeled as
follows:
Covariance matrix :

Vx,f,τ =

NX
n=1

vn,f,τ Rn,f +

2L3−2X
l=D

MX
m=1

|xf,τ−l,m|2Gl,m, (11)

where Gl,m is the stationary covariance matrix of Wf,τ,l,m.
Under the PRTFM, the mean value of the microphone input sig-

nal is corresponding with the reverberation term which can be re-
duced by the inverse filtering. By comparing Eq. 11 and Eq. 6, it
can be shown that

P2L3−2
l=D

PM
m=1 |xf,τ−l,m|2Gl,m is added in the

proposed model. This term is corresponding with the covariance
matrix of the residual reverberation which is time-variant and can-
not be reduced by the inverse filtering. In the proposed method,
the residual reverberation is reduced by the multichannel Wiener fil-
ter in MMSE sense, which is a multichannel extension of a single-
channel non-linear filtering. Therefore, the inverse filtering and the
non-linear filtering are optimized simultaneously, and all parameters
of the PRTFM can be optimized under the same likelihood function.

4. PROPOSED OPTIMIZATION SCHEME UNDER PRTFM

The optimization of parameters under the proposed PRTFM can be
performed efficiently by using EM algorithm [9]. This optimiza-
tion scheme is based on the semi-blind local Gaussian modeling pro-
posed by one of authors for echo reduction problems [8]. In the Estep
(the t-th iteration), the sufficient statistics for the latent variables are
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Fig. 1. Experimental environment: Impulse responses were recorded
by setting a loudspeaker at position “1”, “2”, and “3”.

estimated by the following step: At first, the estimated dereverber-

ated signal, xderev,f,τ = xf,τ −
P2L3−2

l=D W
(t)
f,l xf,τ−l, is calculated.

Rx,f,τ =

NX
n=1

Rcn,f,τ +

2L3−2X
l=1

MX
n=1

Rcrev,l,m,f,τ , (12)

where Rcn,f,τ = v
(t)
n,f,τ R

(t)
n,f , Rcrev,l,m,f,τ = |xf,τ−l,m|2G

(t)
l,m.

R̂cn,f,τ = Wcn,f,τ xderev,f,τ xH
derev,f,τ W H

cn,f,τ

+ (I − Wcn,f,τ )Rcn,f,τ , (13)

R̂crev,l,m,f,τ = Wcrev,l,m,f,τ xderev,f,τ xH
derev,f,τ W H

crev,l,m,f,τ

+ (I − Wcrev,l,m,f,τ )Rcrev,l,m,f,τ , (14)

where Wcn,f,τ = Rcn,f,τ R−1
x,f,τ , Wcrev,l,m,f,τ = Rcrev,l,m,f,τ R−1

x,f,τ .
In the M step, the parameters of the PRTFM can be updated so

as to increase Q function as follows:

v
(t+1)
n,f,τ =

1

M
tr{(R

(t)
n,f )−1R̂cn,f,τ}, (15)

R
(t+1)
n,f =

1

LT

LTX
τ=1

R̂cn,f,τ

v
(t+1)
n,f,τ

, (16)

G
(t+1)
l,m =

1

LT

LTX
τ=1

R̂crev,l,m,f,τ

|xf,τ−l,m|2 , (17)

vec(W(t+1)
f ) = P −1

vec
“ LTX

τ=1

R−1
x,f,τ xf,τ XH

f,τ

”
, (18)

where P =
“PLT

τ=1(Xf,τ XH
f,τ )T ⊗ R−1

x,f,τ

”
, ⊗ is the oper-

ator for the Kronecker-delta multiplication of matrix, Xf,τ =
[ xH

f,τ−D . . . xH
f,τ−2L3+2 ]H , vec is the operator for conver-

tion of a matrix to a vector [10], and W(t+1)
f =

[ W
(t+1)
f,D . . . W

(t+1)
f,2L3−2

].

5. EVALUATION

The proposed method is evaluated by dereverberation experiments
with simulated signals convolved with recorded impulse responses.
Two dry sources were used. One was a male speech, and another
was a female speech. Impulse responses were recorded at a real
meeting room which is shown in Fig. 1. The impulse responses
were recorded by setting a loudspeaker at position “1”, “2”, and
“3”. The reverberation time RT60 was 430 [ms]. The experimen-
tal conditions are shown in Table 1. The evaluation measures are

Table 1. Experimental conditions

Sampling rate 16000 [Hz]

Frame size 1024 [pt]

Frame shift 256 [pt]

Number of microphones 4

Number of speech sources 1 or 2

Length of dry source signal about 5 [sec]

D 2 [tap]

L3 6 [tap]

MFCC distance and NRR (Noise reduction ratio). MFCC distance
is defined as the distance between the correct dereverberated sig-
nal and the estimated one in the MFCC domain. The dimension
of MFCC is set to be 13. NRR is defined as SRRpost − SRRpre,
where SRRpre is the ratio between the correct dereverberated sig-
nal and the reverved signal at a microphone, and SRRpost is the
ratio between the correct dereverberated signal and the estimated
dereverved signal. Smaller MFCC distance means less distortion.
High NRR means high dereverberation performance. In this evalua-
tion, average NRR and average MFCC distance of two sources were
used. The correct dereverberated signal was synthesized by convolv-
ing original dry sources with trimmed impulse responses (length is
P+256 [pt]). P is the peak-time index of each impulse response.
The proposed method (“PROPOSED”) is compared with 4 meth-
ods. “LINEAR LGM” utilizes only the inverse filtering part of the
proposed method. “LINEAR LGM” is a representative of the con-
ventional inverse filtering techniques weighted by the time-varying
matrix (e.g. [4]). “MSLPC” is a basic multi-step linear prediction
approach Vx,f,τ = I(I is the identity matrix). “CASCADE” is a
cascading method of “MSLPC” and only the non-linear part of the
proposed method. “ONLY NLP” is only the non-linear part of the
the proposed method.

The evaluation result when there is one speech source was
shown in Fig. 2. In this evaluation, dereverberation performance is
evaluated by two cases. In the first case, the transfer function was
time-invariant. At the second case, the radiation direction changed
at about 2.5 [sec] by 30 degree. Therefore, the transfer function was
time-variant in this case. The number of the EM iterations was set
to be 10. In the time-invariant transfer function cases, it is shown
that MFCC distance of the proposed method is smallest. NRR of
the proposed method is comparable to ”LINEAR LGM”, although
the time-invariant transfer function is desirable for inverse filtering.
In the time-variant transfer function cases, it is shown that the pro-
posed method achieves always the best performance. Therefore, it
is shown that the proposed method is robust against fluctuation of
the acoustic transfer function. A sample of the spectrogram of the
output signal by the proposed method (“position 1”, the time-variant
case, female speech) is shown in Fig. 3. It can be seen that the late
reverberation was effectively reduced.

Dereverberation and separation performance when there were
two sources and the transfer function was time-varying are evalu-
ated. In this evaluation, “MSLPC” was excluded, because “MSLPC”
performs only dereverberation. For the other methods, the permuta-
tion problem was solved by power spectrum correlation method [11].
The number of the EM iterations was set to be 50 since convergence
was slowly in the two sources case. The evaluation result is shown in
Fig. 4. Except for the NRR result at the “position 1,2”, the proposed
method is shown to achieve the best performance.

Finally, dereverberation performance was measured for the
recorded speech signal. The dereverberated signal was compared
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Fig. 2. Experimental result: Evaluation of dereverberation perfor-
mance under single-source condition

Fig. 3. A sample of output spectrogram by proposed method

Fig. 4. Experimental result: Evaluation of dereverberation and sep-
aration performance under two-sources condition. In “position i,j”,
two sources are located at “position i” and “position j”.

Table 2. Evaluation result for recorded signal: Evaluation measure
is MFCC distance.

PROPOSED LINEAR LGM MSLPC CASCADE ONLY NLP INPUT

position 1 22.7 25.8 27.1 24.7 29.2 32.3

position 2 19.1 22.5 24.1 21.5 25.1 29.4

with the signal recorded at the position of the loudspeaker. MFCC
distance was utilized for the evaluation measure. The speaker po-
sitions were at the position 1 and 2. The wave-length was about
5 [sec]. The background noise was also mixed into the recorded
signal. The evaluation result is shown in Table 2. It is shown that
MFCC distance of the proposed method is the smallest.

6. CONCLUSION

In this paper, we proposed a simultaneous optimization technique of
linear filtering and non-linear filtering from probabilistic perspective
for dereverberation and separation of speech sources. For robust-
ness against fluctuation of acoustic transfer functions, the proposed
method is based on a novel probabilistic reverberant transfer func-
tion model (PRTFM). The proposed method is shown to be effective
by evaluation in a real meeting room.

7. REFERENCES

[1] M. Miyoshi et al., “Inverse filtering of room acoustics,” IEEE
Trans. ASSP, vol. 30, no. 2, pp. 145–152, Feb. 1988.

[2] K. Kinoshita et al., “Suppression of Late Reverberation Effect
on Speech Signal Using Long-Term Multiple-step Linear Pre-
diction,” IEEE Trans. ASLP, vol. 17, no. 4, pp. 534–545, 2009.

[3] K. Furuya et al., “Robust speech dereverberation using multi-
channel blind deconvolution with spectral subtraction,” IEEE
Trans. ASLP, vol. 15, no. 5, Jul. 2007.

[4] T. Yoshioka et al., “Blind separation and dereverberation of
speech mixtures by joint optimization,” IEEE Trans. ASLP,
vol. 19, no. 1, pp. 69–84, Jan. 2011.

[5] Y. Huang et al., “A blind channel identification-based two-
stage approach to separation and dereverberation of speech sig-
nals in a reverberant environment,” IEEE Trans. SAP, vol. 13,
no. 5, pp. 882–895, Sep. 2005.

[6] H. Buchner et al., “TRINICON-based blind system identifica-
tion with application to multiple-source localization and sepa-
ration,” in Blind Speech Separation, S. Makino, T.-W. Lee, and
H. Sawada, Eds. New York: Springer, 2007, pp. 101–147.

[7] N.Q.k. Duong et al., “Under-determined reverberant audio
source separation using a full-rank spatial covariance model,”
IEEE Trans. ASLP, vol. 18, no. 7, pp. 1830–1840, 2010/9.

[8] M. Togami et al., “Multichannel Semi-Blind Source Separation
Via Local Gaussian Modeling for Acoustic Echo Reduction,”
EUSIPCO 2011, pp. 496–500, 2011/8.

[9] A.P. Dempster et al., “Maximum likelihood from incomplete
data via the EM algorithm,” J. of the Royal Statistic Society,
Series B 39(1),pp. 1–38, 1977.

[10] D.A. Harville, Matrix Algebra from a Statistician’s Perspec-
tive. New York: Springer-Verlag, 1997.

[11] S. Ikeda et al., “An approach to blind source separation of
speech signals,” In Proc. ICANN ’98, pp. 761–766, 1998.

4060


