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ABSTRACT

In this paper, we present a novel multichannel dereverber-

ation algorithm that enhances a target signal in a reverber-

ant environment. The proposed algorithm is designed for

a spherical microphone array and formulated in the spheri-

cal harmonic domain. The algorithm employs sparse recov-

ery, a compressed sensing technique, to estimate the position

of the target signal and its early reflections. Room impulse

responses are obtained according to the estimations and the

MINT (the multiple-input/output inverse-filtering theorem) is

used to calculate the inverse filters. The performance of the

proposed method is evaluated using computer simulation and

our results indicate the effectiveness of the proposed derever-

beration algorithm.

Index Terms— Compressed Sensing, Dereverberation,

Spherical microphone arrays

1. INTRODUCTION

Reverberation poses a major challenge to acoustic signal pro-

cessing problems. It degrades speech quality and speech intel-

ligibility, especially critical for non-native listeners and hear-

ing impairment listeners, and also causes many acoustic algo-

rithms to perform poorly. Speech dereverberation is an acous-

tic signal processing technique that aims to extract the orig-

inal target signal from the reverberant microphone signal(s)

in order to improve the quality and intelligibility of speech

for various applications. Generally speaking, speech derever-

beration algorithms are commonly classified into one of the

following three categories: (1) beamforming-based approach:

The observed signals received at microphones are weighted

and summed, so as to form a beam in the direction of the tar-

get signal and attenuate other signals such as reverberation

and noise from other directions; (2) model-based approach:

The microphone signals are modified so as to better represent

some features of the clean target signal according to an a pri-
ori model of the speech waveform or spectrum; and (3) an in-

verse filtering approach: The room impulse responses (RIRs)

are estimated blindly using the microphone signals and then

used to design inverse filters that compensates for the effect

of the reverberation.

In this paper, we present a speech dereverberation algo-

rithm that is based on the application of sparse recovery, a

compressed sensing (CS) technique. Compressed sensing

is a novel sensing paradigm that can be employed to find

the sparse inverse solutions for an under-determined system.

More information about the CS technique can be found in [1].

We show that the positions of the target signal and some of

its early reflections can be estimated using the CS technique

and the target speech signal can be enhanced with the aid of

these estimations. The proposed algorithm is designed for a

spherical microphone array and is formulated in the spheri-

cal harmonic domain. Spherical microphone arrays provide

a promising tool for the spatial analysis of complex sound

fields. As well, working in the spherical harmonic domain

has several advantages including scalability and the ability to

rotate the sound scene by a simple matrix operation. It is also

shown in [2] that a convolutive mixture in time domain can

be transformed into a instantaneous mixture in the spherical

harmonic domain, which provides significant advantages for

source localization and separation [3]. We present a simula-

tion experiment in order to demonstrate the effectiveness of

the proposed algorithm and we also compare the performance

of the proposed algorithm with other algorithms.

2. METHOD

Consider a general multi-microphone system with L micro-

phone signals which we model as:

xi(t) = s(t)⊗ gi(t), i = 1, 2, . . . , L , (1)

where xi(t) is the signal at the i-th microphone, s(t) is the tar-

get signal, gi(t) is the impulse response describing the room

transfer function from the target signal location to the i-th mi-

crophone and ⊗ represents the convolution operation. Spher-

ical harmonic analysis, as used in higher order ambisonics

(HOA) [4], is a powerful tool for describing the spatial prop-

erties of sound fields. The spherical harmonic expansion of a

sound field can be obtained from a spherical microphone ar-

ray [2, 5]. The spherical harmonic expansion, B, of a sound
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field corresponding to a set of plane waves can be expressed

as a simple matrix product:

B = YS , (2)

where, when using a time window of length K, we have:

S =

⎡
⎢⎢⎢⎣
s1(t) s1(t+ 1) . . . s1(t+K − 1)
s2(t) s2(t+ 1) . . . s2(t+K − 1)

...
...

...
...

sP (t) sP (t+ 1) . . . sP (t+K − 1)

⎤
⎥⎥⎥⎦ ,

B = [b(t),b(t+ 1), . . . ,b(t+K − 1)] ,

b(t) =
[
B0

0(t), B
−1
1 (t), . . . , Bn

m(t)
]T

,

Y = [y(θ1, φ1),y(θ2, φ2), . . . ,y(θP , φP )] ,

y(θp, φp) =
[
Y 0
0 (θp, φp), Y

−1
1 (θp, φp), . . . , Y

n
m(θp, φp)

]T
,

m ∈ [0, 1, . . . ,M ] , n ∈ [−m, . . . ,m] .

Y is a (M + 1)2 × P spherical harmonic matrix, truncated

to order M , with column p providing the spherical harmonic

expansion for a plane-wave source located in the direction

(θp, φp), P is the number of entries in the dictionary of pos-

sible plane-wave source directions and is typically chosen

much larger than (M + 1)2, S is a P × K matrix of plane-

wave signals (the p-th row of S is non-zero if there is a signal

in the direction (θp, φp)) and B is a (M + 1)2 × K matrix

containing the HOA signals. In this work, we have chosen

P = 642, M = 2, K = 2048. The HOA signals, B, are

band-pass filtered so that they contain only the frequencies

where the encoding is accurate and can be considered as in-

stantaneous mixtures. The frequency band for accurate HOA

encoding is limited by measurement noise that is amplified by

the encoding filters at low frequencies and spatial aliasing that

pollutes the HOA signals at high frequencies. The frequency

range for the band pass filter is 300 to 3500 Hz and the spher-

ical microphone we use consists of two concentric arrays of

12 omnidirectional microphones. There are 12 microphones

located on the surface of a rigid sphere with a radius of 3 cm;

the other 12 microphones are located on the surface of a open

sphere with a radius of 15 cm. Please refer to [2] for a detailed

description of the processing.

Equation (2) is an under-determined system. In general,

there is an infinite number of solutions and the inverse prob-

lem is ill-posed. Our approach to this ill-posed problem is

to impose sparsity on the solution S, so that the resulting

sound field is explained by a minimum number of plane wave

sources. Mathematically we formulate the sparse recovery

problem as:

minimize ‖S‖1,2
subject to B = YS , (3)

where ‖S‖1,2 is the l1,2 norm of S and is defined as:

‖S‖1,2 =

P∑
p=1

√√√√ K∑
k=1

sp(t+ k − 1)2 .

The computational cost of this optimization problem is high

because of the large size of the inverse problem. In order

to reduce the computational complexity and the sensitivity

to noise, we use a SVD (Singular Value Decomposition)

method [6]. The idea is to decompose B into the signal and

noise subspaces and discard the noise subspace. This can be

represented mathematically as:

B = ULVT . (4)

As only the first (M + 1)2 singular values are non-zero, we

express B as:

B = UΛΨT , (5)

where Λ and Ψ are obtained by keeping the first (M + 1)2

columns of L and V, respectively. We now express S in the

subspace defined by Ψ, i.e. we define Ω such that:

S = ΩΨT . (6)

Using (5) and (6), the equality constraint in (3) becomes:

YΩ = UΛ , (7)

yielding the following convex optimization problem:

minimize ||Ω||1,2
subject to YΩ = UΛ . (8)

CVX, a Matlab package for specifying and solving convex

optimization problem [7], is used for solving the optimization

problem (8).

We make the hypothesis that, for every K-long time win-

dow, the directions of the target signal and its first J reflec-

tions correspond to the J + 1 most energetic rows in Ω. We

track these directions across the entire signal and choose those

indices that occur most frequently over time. Note that in this

work we have set J = 3.

Once the directions of the target signal and its reflections

are obtained, an un-mixing matrix Y′−1 is estimated as:

Y′−1 = pinv(Y′) , (9)

where

Y′ = [y(θp0
, φp0

),y(θp1
, φp1

), . . .y(θpJ
, φpJ

)] ,

(θpj , φpj ) is the j-th identified direction and pinv(X) repre-

sents the pseudo-inverse of X. We then apply the un-mixing

matrix to the band-pass filtered HOA signals to estimate the
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target signal and its reflections. In order to identify the tar-

get signal, ŝtar(t), we first choose the signal with the most

energy. We then compute the time delays, qj , between this

signal and the other signals, referred to as ŝref,j(t), using a

cross-correlation method:

qj = argmax
x

(
1

L

L−x−1∑
t=0

ŝtar(t+ x) ŝref,j(t)

)
, (10)

If we come across a signal with negative time delay, we then

select this signal as the new target signal and continue. The

attenuation parameter for each reflection is determined as the

ratio of the norms of the extracted reflection and target sig-

nals:

αj =
‖ŝref,j(t)‖
‖ŝtar(t)‖ . (11)

Given the directions of the target signal and its reflections,

and also the relative amplitude and delays of these signals,

we estimate the RIRs for each microphone in the array. We

then apply the MINT [8] technique to these RIRs in order

to calculate multichannel inverse filters that can be used to

estimate the clean target signal.

3. EXPERIMENT

We evaluated the proposed dereverberation algorithm with

a spherical microphone array in three different reverberant

rooms using computer simulation. All three rooms have the

same size of 14 × 10 × 3 m (W × L × H), but with differ-

ent reverberant properties determined by the absorption coef-

ficients. The target source and spherical microphone array are

located at (5, 4, 1) m and (4, 4, 1) m respectively relative to the

corner of the room. The experimental setup is shown in Fig. 1

and the reverberation time versus frequency for each room are

shown in Fig. 2. The RIRs were obtained using MCROOM-

SIM, a multichannel room acoustics simulator that is suitable

for a spherical microphone array simulation [9]. These RIRs

were used to filter male voice recordings to create test signals

that simulate spherical microphone array recordings in a re-

verberant environment. These signals were approximately 4

seconds in duration with all of the audio processed at a sam-

pling rate of 16 kHz.

We compared the proposed algorithm with the ICA-based

approach [2] and the MUSIC (MUltiple SIgnal Classification)

algorithm [10] combined with the MINT technique. The per-

formance of these algorithms were evaluated using the Per-

ceptual Evaluation of Speech Quality (PESQ) measure as de-

scribed in the ITU-T recommendation P.862 [11] and the Seg-

mental Signal-to-Reverberation Ratio (SegSRR) [12]. The

output of the PESQ is a measure of the subjective assessment

quality of the degraded signal and is rated as a value between

0 (unacceptable) and 4.5 (excellent). The SegSRR is a signal-

based measure which is obtained by segmenting a signal into

Nseg smaller time frames (typically a duration of 20-40 ms),

Fig. 1. The geometry of the simulation experimental setup is

shown.

Fig. 2. The reverberation time for each simulated shoebox

room.

calculating the normalized SRR (NSRR) for each frame and

averaging all of these NSRR values. This can be expressed

as:

SegSRR =
1

Nseg

Nseg−1∑
l=0

NSRR(l) , (12)

where the NSRR is calculated as:

NSRR = 10 log10(
‖γsd‖22

‖ŝ− γsd‖22
)dB , (13)

sd is the target signal after propagation through the direct

path, ŝ is the estimated target signal and γ is a scalar which is

obtained using the least square minimization:

γ = argmin
x

‖ŝ− xsd‖22 . (14)

4. RESULTS AND DISCUSSION

The performance of the proposed algorithm compared with

the other algorithms is shown in Tables 1-3. We refer to

our algorithm as a sparse recovery (SR) dereverberation al-

gorithm. As a reference, the PESQ measure and SegSRR are

also calculated for the raw microphone signals. According to

the results, we see that the proposed algorithm outperforms
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Table 1. The PESQ score and SegSRR for various speech

enhancement algorithms in Room 1

Method PESQ SegSRR

Raw Microphone Signal 2.56 5.46

ICA approach 2.80 5.90

MUSIC+MINT 2.90 9.29

SR dereverberation algorithm 3.03 11.47

Table 2. The PESQ score and SegSRR for various speech

enhancement algorithms in Room 2

Method PESQ SegSRR

Raw Microphone Signal 2.27 1.83

ICA approach 2.61 5.15

MUSIC+MINT 2.69 6.36

SR dereverberation algorithm 2.76 6.93

Table 3. The PESQ score and SegSRR for various speech

enhancement algorithms in Room 3

Method PESQ SegSRR

Raw Microphone Signal 2.03 0.48

ICA approach 2.47 5.05

MUSIC+MINT 2.51 5.27

SR dereverberation algorithm 2.53 5.42

the other techniques in all three simulated shoebox rooms.

This is expected since (1) the ICA-based approach is unable to

enhance the target signal efficiently at low and high frequen-

cies due to the HOA encoding error [2] and (2) the MUSIC

technique can only effectively detect the position of the target

signal which makes this approach similar to beamforming-

based approaches.

5. CONCLUSION AND FUTURE WORK

In this paper, we propose a dereverberation algorithm that

employs sparse recovery, a CS technique. The proposed al-

gorithm estimates the position of the target signal and its re-

flections. According to the results from the simulation ex-

periment, the proposed algorithm effectively reduces the re-

verberation and outperforms other algorithms. The proposed

method has been simulated using a single-source scenario.

However, in reality, there are usually multiple sources in a

reverberant environment. Thus the performance of the pro-

posed method in a multi-source scenario will be evaluated in

future work. Moreover, a psychoacoustic listening test will

be designed and conducted to evaluate the subjective perfor-

mance of the proposed algorithm.
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