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ABSTRACT

In this paper, we propose a new method for stable estimation of the
kurtosis of a speech power spectrum. Speech kurtosis can be used for
the prediction of speech recognition accuracy as reported in recent
studies. However, the conventional estimation method is very unsta-
ble owing to the high sensitivity of higher-order statistics. To over-
come this problem, we introduce the generalized Gaussian distribu-
tion prior in order to avoid the calculation of higher-order statistics,
and construct a kurtosis table that directly represents the relationship
among the kurtosis of speech, noise, and their mixture in the power
spectrum domain. Speech kurtosis can be estimated stably from ob-
servable data by looking up values in the table. An experimental
evaluation confirms the efficacy of the proposed method.

Index Terms— Speech kurtosis estimation, Generalized Gaus-
sian distribution, Kurtosis table, Moment-cumulant transformation.

1. INTRODUCTION

In recent years, many applications of speech communication systems
have been developed, resulting in real-world human interfaces. In
such applications, the essential requirement is robustness against en-
vironmental noise. Therefore, many nonlinear noise reduction meth-
ods, such as spectral subtraction and MMSE short-time spectral am-
plitude estimation, have been actively studied [1].

Several metrics have been proposed as measures of evaluation
for these methods, namely, the noise reduction rate (or SNR) [2],
cepstral distortion [3], and kurtosis ratio [4], which correspond to
the amounts of noise reduction, speech distortion, and musical noise
generation, respectively. Since speech distortion affects speech
recognition accuracy, a measure of speech distortion is particularly
indispensable as an indicator for optimizing speech recognition sys-
tems. The calculation of cepstral distortion, which is a commonly
used measure of speech distortion, requires a reference (clean)
speech signal. However, in actual situations, the speech compo-
nent is always overlapped with noise, and we cannot obtain a clean
speech signal. Consequently, the optimal parameters in the noise
reduction method cannot be estimated. To overcome this problem,
as an unsupervised measure of speech distortion estimated in a
reference-free manner, the kurtosis of the speech power spectrum
has been proposed by the authors, which is effective for optimizing
parameters in the noise reduction method and predicting speech
recognition accuracy [5, 6].

The main problem in our previous method [5] is the low robust-
ness in the estimation of higher-order statistics. In this method, it
is necessary to calculate up to eighth-order statistics in the observed
signal waveform domain. Since sixth- and eighth-order statistics are
very sensitive to outliers, we cannot estimate them stably from ob-
servable finite samples, causing considerable degradation of the esti-
mated kurtosis of the speech power spectrum. To solve this problem,
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in this paper we propose a new method using a statistical prior of
waveform signals, where the waveform signals of speech and noise
obey the generalized Gaussian distribution [7]. We can construct
a kurtosis table, which represents the direct relationship among the
kurtosis of speech, noise, and their mixture in the power spectrum
domain, using the prior, the additivity of cumulants, and a moment-
cumulant transformation. Then, the kurtosis of the speech power
spectrum is estimated from observable signals without any refer-
ences by looking up values in the table. We conduct an evaluation
experiment and confirm that the accuracy of speech kurtosis esti-
mation is markedly improved by the proposed method even if the
snapshot data length is only 1 s.

2. PREVIOUS WORKS

2.1. Problem and strategy

In this section, we describe the conventional method of speech kur-
tosis estimation for evaluating pure distortion that arises only in the
speech component. We consider an acoustic mixing model, where
the observed signal consists of a target speech signal and an additive
noise signal. Hereafter, the observed signal in the time-frequency
domain, x(f, τ), is given by

x(f, τ) = s(f, τ) + n(f, τ), (1)

where f is the frequency bin number, τ is the time-frame index num-
ber, s(f, τ) is the target speech signal component, and n(f, τ) is the
additive noise signal. Since the speech component is always contam-
inated with noise at every time-frequency grid, it is difficult to esti-
mate the speech kurtosis via theoretical analysis. Therefore, we in-
versely calculate the kurtosis of the speech power spectrum in a data-
driven manner, utilizing two observable statistics of the noisy speech
signal x(f, τ) and noise signal n(f, τ) (we assume that the noise
statistics can be measured in a speech-absent time period by voice-
activity detection or BSS-based noise estimation [5]). Note that the
proposed speech kurtosis estimation is an unsupervised method be-
cause it requires no reference (clean) speech signals, unlike cepstral
distortion.

To cope with the mathematical problem that the mixing of
speech and noise is additive but generally their higher-order mo-
ments are not additive, we introduce the cumulant, which retains
the additivity for additive variables. Meanwhile, in the transfor-
mation from a waveform to its power spectrum, the exponentiation
operation is conducted. However, the cumulant does not have a
straightforward relationship. In this case, we use the moment in-
stead of the cumulant. Thus, we previously proposed the use of a
moment-cumulant transformation [5].

2.2. Moment-cumulant transformation

In this section, we give some formulas regarding the moment-
cumulant transformation. They explicitly represent the relations
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between the moment and cumulant in each order, which are use-
ful for estimating the kurtosis of a speech power spectrum. The
mth-order moment μm(y) can be written as

μm(y) =
∑
π(m)

∏
B∈π(m)

κ|B|(y), (2)

where π(m) runs through the list of all partitions of a set of size m,
B ∈ π(m) means that B is one of the blocks into which the set is
partitioned, and |B| is the size of set B. In the same manner, the
mth-order cumulant κm(y) is given by

κm(y) =
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

μ|B|(y). (3)

2.3. Estimation of speech kurtosis from observations [5]

Hereafter, to deal with time-frequency-domain signals, we define
complex-valued variables of the observed (noisy speech) signal, the
original speech signal, and the noise signal as (xR+ixI), (sR+isI),
and (nR+inI), respectively, where xR = sR+nR and xI = sI+nI

hold. Only the statistics of (xR + ixI) and (nR + inI) are observ-
able, but that of (sR + isI) is a hidden value to be estimated. First,
we measure the following mth-order moments from the data:

μm(xR) =μm(xI) = E[xm
R ], (4)

μm(nR) =μm(nI) = E[nm
R ], (5)

where we assume that xR and xI are i.i.d., and this also holds for the
noise and observed signals.

In [5], the kurtosis of the speech power spectrum is estimated
from the following equation using (4), (5), and the additivity of cu-
mulants:

kurtspeech =
μ4(s

2
R + s2I )

μ2
2(s

2
R + s2I )

=
N (μm(xR), μm(nR))

D (μm(xR), μm(nR))
, (6)

where

N (μm(xR), μm(nR))

= μ8(xR)− μ8(nR)

+ [4μ2(xR)− 32μ2(nR)]μ6(xR)

+ [−32μ2(xR) + 60μ2(nR)]μ6(nR)

+
[−76μ4(nR)− 96μ2(xR)μ2(nR) + 516μ2

2(nR)
]
μ4(xR)

+
[−60μ2

2(xR) + 1056μ2(xR)μ2(nR)− 1416μ2
2(nR)

]
μ4(nR)

+ 3μ2
4(xR) + 73μ2

4(nR)

+ 468μ2
2(xR)μ

2
2(nR)− 3456μ2(xR)μ

3
2(nR) + 2988μ4

2(nR),
(7)

D (μm(xR), μm(nR))

= 2
(
μ4(xR)− μ4(nR) + μ2

2(xR)− 8μ2(xR)μ2(nR) + 7μ2
2(nR)

)2
.

(8)

3. PROPOSED METHOD

3.1. Problem of conventional method and motivation

The conventional method can estimate the kurtosis of a speech power
spectrum without a clean speech signal to some extent. However,
the accuracy of speech kurtosis estimation using the conventional
method is often very unstable because of the instability in estimat-
ing very high order (sixth- and eighth-order) statistics obtained from
finite samples. To avoid this, we propose to estimate speech kurto-
sis directly in the power spectrum domain instead of estimating the

kurtosis of the speech power spectrum using sixth- and eighth-order
statistics obtained from waveform signals in the time-frequency do-
main. More specifically, we calculate the kurtosis of the speech
power spectrum by looking up values in a kurtosis table, which rep-
resents the direct relation among the kurtosis of speech, noise, and
observed (noisy speech) signals in the power spectrum domain.

To construct the kurtosis table, we have to determine the math-
ematical relationship among the kurtosis of signals. However, there
exist infinite patterns of signals that have an equivalent kurtosis
value. Therefore, it is quite difficult to uniquely determine each
signal. To avoid this problem, we apply a statistical assumption to
the waveform signals of speech and noise. In the following section,
we describe the statistical assumption in detail.

3.2. Parametric model

In the proposed method, we introduce the generalized Gaussian dis-
tribution for modeling the waveform signals of speech and noise.
The probability density function (p.d.f.) of the generalized Gaussian
distribution is defined as

p(y) =
β

2αΓ(1/β)
e−(|y|/α)β , (9)

where α is a scale parameter, β is a shape parameter, and Γ(·) de-
notes the gamma function. Next, the mth-order moment of the gen-
eralized Gaussian distribution is given by

μm(y) =

∫ ∞

−∞
ymp(y)dy = αmΓ((m+ 1)/β)

Γ(1/β)
. (10)

The kurtosis table is constructed using (10) and the moment-
cumulant transformation in the next subsection.

3.3. Speech kurtosis estimation based on generalized Gaussian
distribution prior

First, the mth-order moments of the waveform (time-frequency gird)
signals of speech and noise are calculated as

μm(sR) = αm
s
Γ((m+ 1)/βs)

Γ(1/βs)
, (11)

μm(nR) = αm
n
Γ((m+ 1)/βn)

Γ(1/βn)
, (12)

where αs and αn are the scale parameters in the distributions for
speech and noise signals, and βs and βn are the shape parameters in
these distributions, respectively.

Next, the moment of the square of sR is given by

μm(s2R) =μ2m(sR) = α2m
s

Γ((2m+ 1)/βs)

Γ(1/βs)
. (13)

Then we can calculate the cumulant of the power spectrum s2R + s2I
as

κm(s2R + s2I ) =2κm(s2R)

=2
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

μ|B|(s
2
R),

(14)

and the mth-order moment of the power spectrum is given by

μm(s2R + s2I ) =
∑
π(m)

∏
B∈π(m)

κ|B|(s
2
R + s2I ). (15)
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Finally, using (11) and (13)–(15), the kurtosis of the speech
power spectrum is derived as a function of the shape parameter βs,

kurtspeech =
μ4(s

2
R + s2I )

μ2(s2R + s2I )
2
=

Ns(βs)

Ds(βs)
, (16)

where

Ns(βs)

= Γ

(
9

βs

)
Γ

(
1

βs

)3

+4Γ

(
7

βs

)
Γ

(
3

βs

)
Γ

(
1

βs

)2

+3Γ

(
5

βs

)
Γ

(
1

βs

)2

,

(17)

Ds(βs)

= 2Γ

(
5

βs

)
Γ

(
1

βs

)3

+4Γ

(
5

βs

)
Γ

(
3

βs

)2

Γ

(
1

βs

)
+2Γ

(
3

βs

)4

.

(18)

Next, in the same manner, the kurtosis of the noise power spec-
trum is defined as

kurtnoise =
μ4(n

2
R + n2

I )

μ2(n2
R + n2

I )
2
=

Nn(βn)

Dn(βn)
, (19)

where

Nn(βn)

= Γ

(
9

βn

)
Γ

(
1

βn

)3

+4Γ

(
7

βn

)
Γ

(
3

βn

)
Γ

(
1

βn

)2

+3Γ

(
5

βn

)
Γ

(
1

βn

)2

,

(20)

Dn(βn)

= 2Γ

(
5

βn

)
Γ

(
1

βn

)3

+4Γ

(
5

βn

)
Γ

(
3

βn

)2

Γ

(
1

βn

)
+2Γ

(
3

βn

)4

.

(21)

Next, we calculate the kurtosis of the observed (speech-noise
mixture) signal. Generally, the cumulant has additivity for additive
independent valuables, i.e., κm(a + b) = κm(a) + κm(b). Using
this relation and (3), we can estimate the cumulant of the observed
signal as

κm(xR) =κm(sR) + κm(nR)

=
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

μ|B|(sR)

+
∑
π(m)

(−1)|π(m)|−1(|π(m)| − 1)!
∏

B∈π(m)

μ|B|(nR).

(22)

The moment of the square of xR is given by

μm(x2
R) =μ2m(xR) =

∑
π(2m)

∏
B∈π(2m)

κ|B|(xR). (23)

Then, we can estimate the kurtosis of the observed signal in the
power spectrum domain in a similar way to (14)–(16). The kurtosis
of the observed signal in the power spectrum domain is calculated as

kurtobserved=
μ4(x

2
R+x2

I )

μ2(x2
R+x2

I )
2
=

Nx(βs, αs, βn, αn)

Dx(βs, αs, βn, αn)
, (24)

where

Nx(βs, αs, βn, αn)

=α8
s

{
Γ

(
9

βs

)
Γ

(
1

βs

)
+4Γ

(
7

βs

)
Γ

(
3

βs

)
+3Γ

(
5

βs

)2
}
Γ

(
1

βs

)2

Γ

(
1

βn

)4

+α6
sα

2
n

{
32Γ

(
7

βs

)
Γ

(
1

βs

)
+96Γ

(
5

βs

)
Γ

(
3

βs

)}
Γ

(
3

βn

)
Γ

(
1

βs

)2

Γ

(
1

βn

)3

+α4
sα

4
n

{
76Γ

(
5

βs

)
Γ

(
5

βn

)
Γ

(
1

βs

)
Γ

(
1

βn

)
+60Γ

(
5

βs

)
Γ

(
3

βn

)2

Γ

(
1

βs

)

+60Γ

(
5

βn

)
Γ

(
3

βs

)3

Γ

(
1

βn

)
+108Γ

(
3

βs

)2

Γ

(
3

βn

)2
}
Γ

(
1

βs

)2

Γ

(
1

βn

)2

+α2
sα

6
n

{
32Γ

(
7

βn

)
Γ

(
1

βn

)
+96Γ

(
5

βn

)
Γ

(
3

βn

)}
Γ

(
3

βs

)
Γ

(
1

βs

)3

Γ

(
1

βn

)2

+α8
n

{
Γ

(
9

βn

)
Γ

(
1

βn

)
+4Γ

(
7

βn

)
Γ

(
3

βn

)
+3Γ

(
5

βs

)2
}
Γ

(
1

βs

)4

Γ

(
1

βn

)2

,

(25)

Dx(βs, αs, βn, αn)

=2

[
α4
s

{
Γ

(
5

βs

)
Γ

(
1

βs

)
+Γ

(
3

βs

)2
}
Γ

(
1

βn

)2

+α2
sα

2
n

{
Γ

(
3

βs

)
Γ

(
3

βn

)
Γ

(
1

βs

)
Γ

(
1

βn

)}

+ α4
n

{
Γ

(
5

βn

)
Γ

(
1

βn

)
+Γ

(
3

βn

)2
}
Γ

(
1

βs

)2
]2

. (26)

From the above-mentioned results, we can confirm that (a) the
speech kurtosis, kurtspeech, given by (16), is a function of βs only,
and noise the kurtosis, kurtnoise, given by (19), is a function of βn

only. Thus, they are independent variables. (b) The kurtosis of the
observed signal, kurtobserved, is a complex function of βs, βn, αs,
and αn. Thus, given αs and αn, we can plot the value of kurtobserved
on the two-dimensional independent axes of kurtspeech (of βs) and
kurtnoise (of βn), yielding the desired kurtosis table. The scale pa-
rameter is defined using the variance and shape parameter of each
signal as

α =

√
σ2

Γ(1/β)

Γ(3/β)
, (27)

where σ2 is the variance of the signal. We determine the scale pa-
rameter from the input SNR, which expresses the variance ratio of
the speech to noise signals. The variance of noise, σ2

n, is measured
in a noise-only time period, and that of speech, σ2

s , can be estimated
as σ2

x − σ2
n. Thus, we can construct the kurtosis table at each input

SNR by varying the shape and scale parameters. Then, the kurtosis
of the speech power spectrum can be estimated from the kurtosis of
the power spectra of the noise and observed signals by looking up
values in the table. An example of such a kurtosis table is shown in
Fig. 1. In this figure, the variance ratio of speech to noise signals is
fixed to unity. Thus, this table should be used when the input SNR
between the speech and noise signals is 0 dB.

4. EXPERIMENTS

4.1. Experimental setup

To confirm the effectiveness of the proposed method, we conducted
an experiment on kurtosis estimation of the speech power spec-
trum. In this experiment, the conventional method and the proposed
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Fig. 1. Kurtosis table in power spectrum domain when input SNR is
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Fig. 2. Examples of speech kurtosis estimates for (i) white Gaussian
noise, (ii) railway station noise, (iii) museum noise, and (iv) babble
noise. Whole sentences are used in estimation.

method based on the generalized Gaussian distribution prior were
compared.

We used 200 utterances (100 males and 100 females from the
Japanese newspaper dictation database) as the target speech signals
and four types of noise signals, namely white Gaussian noise, rail-
way station noise, museum noise, and babble noise. Furthermore,
we used three different types of data length: (a) the full length of
each utterance of 2–15 s (whole sentence), (b) the first half of each
utterance (half of sentence), and (c) the first second of each utter-
ance (one second). The test data were obtained by combining the
target speech signals and noise signals. All signals used in this ex-
periment were 16-kHz-sampled signals. The input SNR of the test
data was set to 0, -5, or -10 dB. The speech kurtosis in the power
spectrum domain of the test data was estimated using the conven-
tional and proposed methods. In the proposed method, we con-
structed the kurtosis table for each SNR. In these kurtosis tables,
kurtspeech and kurtnoise were changed from 0 to 3500 by three.
We calculated the normalized error of the estimates in the conven-
tional and proposed methods and compared the accuracy of speech
kurtosis estimation. The normalized error is defined as enorm =
|kurtoracle − kurtspeech|/kurtoracle, where kurtoracle is the power
spectral kurtosis of the clean speech signal and kurtspeech is the es-
timate of the speech power spectral kurtosis.

4.2. Experimental results
Figure 2 shows examples of speech kurtosis estimation results for
10 utterances using the conventional and proposed methods when

Table 1. Average normalized error of estimates of speech kurtosis in
power spectrum domain using conventional and proposed methods
for (i) white Gaussian noise, (ii) railway station noise, (iii) museum
noise, and (iv) babble noise

Data length Method (i) (ii) (iii) (iv)

Whole sentence
Conventional 0.27 0.35 0.45 0.49

Proposed 0.11 0.22 0.33 0.28

Half of sentence
Conventional 0.33 0.37 0.55 0.88

Proposed 0.18 0.25 0.31 0.35

One second
Conventional 0.30 0.60 1.28 16.50

Proposed 0.16 0.32 0.39 0.40

the input SNR is -10 dB. In Fig. 2, although the kurtosis of the clean
speech signal has quite a high value, the kurtosis of the observed
(noisy speech) signal is lower than that of the clean speech signal.
Estimates close to original values can be obtained by using the con-
ventional and proposed methods. However, sometimes the estimates
of speech kurtosis have a large error in the conventional method; in
contrast, the proposed method’s results are very stable and accurate.

Table 1 shows the average normalized error of estimates of
speech kurtosis in the power spectrum domain using the conven-
tional and proposed methods. In Table 1, estimates using the con-
ventional method for the museum noise and babble noise have quite
a large error, especially in the case of 1 s data length. However, these
errors are reduced by using the proposed method. Also, in estimates
for the white Gaussian noise and railway station noise, errors are
lower for the proposed method. From these results, we can confirm
that accuracy of speech kurtosis estimation is markedly improved
using the proposed method.

5. CONCLUSION

In this paper, we proposed a new method for the stable estimation of
speech kurtosis in the power spectrum domain based on the general-
ized Gaussian distribution prior in order to avoid the calculation of
higher-order statistics. Using this prior and the additivity of cumu-
lants, we can construct a kurtosis table that directly represents the
relationship among the kurtosis of speech, noise, and their mixture
in the power spectrum domain, and speech kurtosis can be estimated
stably from the observable data. An experimental evaluation con-
firmed the efficacy of the proposed method.
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