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ABSTRACT

In this paper we present a novel noise power spectral density
tracking algorithm and its use in single-channel speech en-
hancement. It has the unique feature that it is able to track
the noise statistics even if speech is dominant in a given time-
frequency bin. As a consequence it can follow non-stationary
noise superposed by speech, even in the critical case of rising
noise power. The algorithm requires an initial estimate of the
power spectrum of speech and is thus meant to be used as a
postprocessor to a first speech enhancement stage. An exper-
imental comparison with a state-of-the-art noise tracking al-
gorithm demonstrates lower estimation errors under low SNR
conditions and smaller fluctuations of the estimated values,
resulting in improved speech quality as measured by PESQ
scores.

Index Terms— Noise power estimation, MAP parameter
estimation, speech enhancement

1. INTRODUCTION

The noise power spectral density (PSD) estimation algorithm
is a key component of any speech enhancement system, as the
achievable quality of the enhanced speech critically depends
on it. When the noise is non-stationary, it is not sufficient
to update the noise PSD in speech absence periods only —
the noise PSD needs to be tracked even during speech ac-
tivity. Several algorithms have been proposed for this, such
as the minimum statistics (MS) algorithm, the minima con-
trolled recursive averaging (MCRA) algorithm and its im-
proved version IMCRA, a subspace noise tracking algorithm
and the minimum mean squared error estimation of the noise
periodogram. These and other algorithms have been recently
compared on a common evaluation database in [1].

All of the aforementioned noise PSD estimation algo-
rithms make two basic assumptions: First, the noise is as-
sumed to be “more stationary” than speech and second, time-
frequency bins can be found, which allow for the observation
of solely the noise even in a speech-noise mixture. While
still requiring the first, the algorithm presented here, does
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away with the second requirement: The noise PSD can be
estimated even if speech is dominant in the time-frequency
bin under consideration. This is made possible by assuming
that an initial estimate of the speech power is given. The
estimation of the parameters of the noise process in the short
time Fourier transform domain is then cast into the problem
of estimating the variance of a complex-valued zero-mean
white Gaussian random process (WGP) in the presence of
”noisy” observations (the target process being “corrupted” by
the superposed speech). This is solved by the Maximum a
Posteriori (MAP)-based estimator recently proposed in [2].

The remainder of this paper is organized as follows: in
Section 2 we derive the MAP estimator for the variance of
the short-time Fourier transform (STFT) coefficients of the
noise process given noisy speech. Section 3 illustrates, how
the proposed estimator is integrated in a speech enhancement
system. Next we describe the experimental framework and
the results of the performance evaluation in Section 4, before
we draw some conclusions in Section 5.

2. MAP-BASED NOISE VARIANCE ESTIMATION

In the following we derive an estimator of the noise PSD
given the STFT of the noisy speech Yk,l = Xk,l + Nk,l,
where k represents the frequency bin index and l the frame in-
dex. Xk,l and Nk,l denote the STFTs of the clean speech and
the noise signals, respectively. Since the PSD estimator treats
each frequency component identically and independently of
the others, we will drop the frequency bin index.

The STFTs are modeled as complex-valued zero-mean
WGPs. Adjoining the real and imaginary parts to two-
dimensional column vectors Yl, Xl and Nl, respectively,
and denoting the time-variant variances ofXl and Nl by σ2

X,l

and σ2
N,l, the probability density function (PDF) of Yl is a

zero-mean Gaussian with variance σ2
X,l + σ2

N,l, if we assume
that speech and noise are independent.

Our goal is to estimate the noise PSD, i.e., the variance
σ2
N,l, from the noisy observation yl, which is a realization of

Yl. To achieve this we are going to extend a special case of
the method that was proposed in [2] to the two-dimensional
case. There, an approximate MAP estimate of the parameters
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of a Gaussian has been derived, if the observation is drawn
from the superposition of the Gaussian with another Gaussian
of known variance. Applying this to the problem at hand,
we are going to derive a MAP estimate of σ2

N,l+1, at frame
l + 1, given a prior distribution of the variance and a new
observation yl+1 and further assuming knowledge of σ2

X,l+1.
Let us assume for the moment that the noise is stationary,

i.e., σ2
N,l+1 = σ2

N
. If σ2

X,l+1 = 0, the scaled inverse chi-
square distribution

pσ2
N
(σ2) ∝ (σ2)−

νl+2

2 · e−
νlλ

2
l

2σ2 (1)

with the hyper parameters νl and λ2l , indicating the degrees
of freedom and the scale, respectively, is a conjugate prior for
the observation PDF

pYl+1|σ2
N
(yl+1|σ

2) =
1

πσ2
e−

|yl+1|2

σ2 . (2)

The posterior can then be computed as [3]

pσ2
N
|Yl+1

(σ2|yl+1) ∝ pYl+1|σ2
N
(yl+1|σ

2) · pσ2
N
(σ2) (3)

∝ (σ2)−
νl+4

2 · e−
2|yl+1|2+νl·λ

2
l

2σ2 (4)

= (σ2)−
νl+1+2

2 · e−
νl+1λ2

l+1

2σ2 , (5)

where the parameters νl and λ2l of (1) have been replaced by

νl+1 := νl + 2 and λ2l+1 :=
2|yl+1|

2 + νlλ
2
l

νl + 2
. (6)

With these update rules for the hyper parameters, the posterior
(3) has the same form as the prior (1). The MAP estimate at
frame l + 1 of the variance σ2

N
is then given by

σ̂2
N,l+1 = argmax

σ2

[
pσ2

N
|Yl+1

(σ2|yl+1)
]

(7)

=
νl+1

νl+1 + 2
· λ2l+1 =

νl+1

νl+1 + 2
·

(
2|yl+1|

2

νl+1
+ σ̂2

N,l

)
. (8)

Thus, νl+1 determines the weight, by which a new observa-
tion yl+1 is taken into account for the parameter update.

Now let’s turn to the case where σ2
X,l+1 �= 0. Then, the

posterior PDF has the form [2]

pσ2
N
|Yl+1

(σ2|yl+1) (9)

∝ (σ2
X,l+1 + σ2)−1 · (σ2)−

νl+2

2 · e
−

(
|yl+1|2

σ2
X,l+1

+σ2
+

νlλ
2
l

2σ2

)
,

which is different from (1), i.e., (1) is no longer a conjugate
prior. Before coming back to this issue we first show how the
maximum of (9) can be found, i.e., the MAP estimate σ̂2

N,l+1.
With ψ := σ2 > 0, searching for the maximum of (9)

corresponds to finding the minimum of

f(ψ) := −2 ln(pσ2
N
|Yl+1

(ψ|yl+1))

∝ 2 ln(σ2
X,l+1 + ψ) + (νl + 2) ln(ψ)︸ ︷︷ ︸

f1(ψ)

+
2|yl+1|

2

σ2
X,l+1 + ψ

+
νlλ

2
l

ψ︸ ︷︷ ︸
f2(ψ)

.

Note that f1(ψ) is strictly monotonically increasing and
f2(ψ) is strictly monotonically decreasing for ψ > 0. And
since limψ→0 f(ψ) = limψ→∞ f(ψ) = ∞, f(ψ) has exactly
one local positive minimum, which can be found as a positive
root of

f ′(ψ) =
2

σ2
X,l+1 + ψ

+
νl + 2

ψ
−

2|yl+1|
2

(σ2
X,l+1 + ψ)2

−
νlλ

2
l

ψ2

=
2[ψ − ψa]ψ

2 + (νl + 2)[ψ − ψb](σ
2
X,l+1 + ψ)2

(σ2
X,l+1 + ψ)2 · ψ2

(10)

with ψa = |yl+1|
2−σ2

X,l+1 and ψb =
νl

νl + 2
λ2l . (11)

Since the denominator is always positive, it suffices to con-
sider the numerator, which will be denoted by g(ψ). It can be
verified that g(bD) < 0 and g(bU ) > 0, where

bD = min(max(0, ψa), ψb) and bU = max(ψa, ψb).

The desired positive rootψl+1 of g(ψ) can then be determined
efficiently using a combination of a bisection and Newton ap-
proach [2] and delivers the MAP estimate σ̂2

N,l+1 = ψl+1.
In order to obtain an efficient MAP estimation procedure on
successive observations yl+1, yl+2, . . . we need to establish
a conjugate prior. This is done by approximating (9) by a
scaled inverse chi-squared distribution according to (1) with
maximum at ψl+1. As stated by (8), this is achieved by setting

λ2l+1 :=
νl+1 + 2

νl+1
· ψl+1 and νl+1 = νl + 2. (12)

If Nl is a non-stationary process, the estimation of the
time-variant variance σ2

N,l+1 can be accomplished by a sim-
ple modification: The parameter νl from (1) is kept at some
constant value νl+1 = νl = ν0. In this way we introduce a
forgetting mechanism, since the weight of the new observa-
tion is kept constant, irrespective of the number of observa-
tions used so far, see Eq. (8). The parameter ν0 thus acts as a
smoothing parameter: The larger ν0 the smoother is the time
trajectory of variance estimates. The choice of ν0 depends
on the desired trade-off between the estimator’s variance in
stationary noise and the ability to track the time-variant σ2

N,l.
The proposed algorithm has very low computational com-

plexity. Another important property is that it has only one pa-
rameter, ν0, which needs to be chosen according to the degree
of non-stationarity of the noise.

3. INTEGRATION INTO SPEECH ENHANCEMENT
SYSTEM

In practice, the speech variance σ2
X,l is not known. We there-

fore propose to use the introduced noise PSD estimator, de-
noted by MAP-B in the following, as a postprocessor of a
first speech enhancement system, which provides an estimate
σ̂2
X,k,l of the clean speech variance for all frequency bins k.
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To do so it requires a first noise PSD estimator, for which any
of the known algorithms can be taken. In our experiments we
used the IMCRA algorithm [4] for this purpose.

Yk,l

IMCRA
σ̆2
N,k,l a priori

SNR

σ̂2
X,k,l

MAP-B
σ̂2
N,k,l

X̂
(I)
k,l

X̂
(II)
k,l

OM-LSA

OM-LSA

Fig. 1. Integration of MAP-B estimator into a single-channel
speech enhancement system.

Fig.1 illustrates the setup. Given the noisy speech STFT
Yk,l at its input the IMCRA algorithm delivers a first estimate
of the noise variance σ̆2

N,k,l. With this the a priori SNR is
estimated by a decision-directed approach, from which the
desired estimate of the speech variance σ̂2

X,k,l is obtained.
With this estimate the MAP-B algorithm will deliver an up-
dated noise PSD estimate σ̂2

N,k,l, which can be used in the
optimally-modified log-spectral amplitude (OM-LSA) esti-
mator X̂(II)

k,l of the clean speech signal [4].

4. EXPERIMENTAL FRAMEWORK AND
PERFORMANCE EVALUATION

In our experiments the clean speech signals were taken from
the TIMIT database [5]. By concatenating sentences and re-
moving beginning and trailing silences, a male speaker and a
female speaker test sample were created, each consisting of
speech of seven different speakers and having a total length
of 3 minutes. The speech signals were sampled at 16kHz and
the STFT spectral analysis used a Hamming window of 512
samples length with a frame overlap of 75%.

The clean speech signals were artificially degraded by
adding noise. Four different noise types were considered.
Stationary white Gaussian noise (WGN), ’Babble’ noise and
so called ’Factory-1’ noise were taken from the Noisex92
database [6]. Moreover, to examine the performance of the
algorithm in highly non-stationary noise, we generated a
modulated version of ’Stationary WGN’ named ’Triangular
WGN’ according to the modulation signal used: The level
of the noise was increased at a rate of 2 dB/s for a period
of 3 seconds and then reduced again to the original level at
the same rate. We conducted experiments at different SNR
levels. The global SNR was varied from −5 dB to 15 dB in
steps of 5 dB.

For the reference noise PSD, against which the estimates
are to be compared, we adopted the approach taken in [1],
i.e. a recursive temporal smoothing was applied to the known
noise periodogram:

σ2
N,k,l = 0.95 · σ2

N,k,l−1 + 0.05 · |Nk,l|
2, (13)

with start value σ2
N,k,0 = |Nk,0|

2 for l = 1.
To verify the claim stated in the introduction that the

MAP-B estimator is able to estimate the noise even if the
speech is dominant, consider the trajectories depicted in
Fig.2(a). It shows the reference noise PSD σ2

N,l and the
time-variant noise PSDs σ̆2

N,l and σ̂2
N,l estimated by IMCRA

and MAP-B, respectively, for ’Babble’ noise at an SNR of
0 dB and a frequency bin k = 97 (center frequency 3 kHz).
In the experiments we set ν0 = 40 corresponding to a time
constant of 0.164 s. Unlike IMCRA, MAP-B continuously
updates its estimate and thus follows the reference noise PSD
more closely. Fig.2(b) displays an extract of the noise PSD
estimates for ’Triangular WGN’ averaged over frequency. It
shows that the response of the MAP-B estimator to rising
noise power is much faster than that of the IMCRA estimator.

Time [s] Time [s]
4 5 6 7 8 4 5 6 7 8

(a) (b)

[d
B

]

50

56

62

64

66

68

reference
IMCRA
MAP-B

Fig. 2. Noise PSD estimations for a noisy speech signal at
an SNR of 0 dB: (a) degraded by ’Babble’ noise for a single
frequency bin k = 97 (center frequency 3 kHz); (b) degraded
by ’Triangular WGN’ averaged over frequency.

For a quantitative evaluation we adopted the performance
measures proposed in [1], however with a slight modification.
The first measure is the minimum averaged log distanceLEm
between the estimated and reference noise PSD

LEm = min
τ

[LEm(τ)] = min
τ

[
1

LK

L∑
l=1

K∑
k=1

Δk,l(τ)

]
(14)

with Δk,l(τ) =

∣∣∣∣∣10 log10 σ
2
N,k,l−τ

σ̃2
N,k,l

∣∣∣∣∣ and ˜∈ {̆,̂ }.

LEm is the mean of the logarithmic difference between the
’true’ and estimated noise variances, averaged over frequency
bins and frames. In contrast to [1], the time-variant true noise
variances were first aligned to the temporal sequence of the
estimates and the reported value is the smallest value obtained
by varying the lag τ . This optimization was done because
the computation of the ’true’ noise variance according to (13)
and the estimation procedures can induce different latencies,
which should be eliminated.
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The second performance measure is the variance of the
logarithmic difference

LEv =
1

NM

N∑
n=1

M∑
m=1

LEv,n,m with (15)

LEv,n,m =
1

LsKs

(m+1)Ls∑
l=mLs+1

(n+1)Ks∑
k=nKs+1

(Δk,l(τmin)− μnl )
2

and μnl =
1

Ks

(n+1)Ks∑
k=nKs+1

Δk,l(τmin),

where τmin = argminτ [LEm(τ)]. N and M are the num-
ber of frequency and time blocks over which the variance es-
timates are averaged. LEv,n,m is the value computed from
the time-frequency block starting at time framemLs and fre-
quency bin nKs and having the length of Ls = 2Ks frames
and Ks = 16 frequency bins. LEv measures the amount of
fluctuations in the estimated noise PSD. The stronger these
fluctuations the more likely will the speech enhancement sys-
tem produce musical tones [1].
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Fig. 3. Performance measures for various noise types and
SNRs: (a) and (b) LEm and LEv, respectively, obtained by
IMCRA and MAP-B; (c)PESQGain compared to IMCRA for
female and male speakers.

Fig.3 (a) and (b) compares IMCRA and MAP-B with re-
spect to the performance measures LEm and LEv for various
noise types and noise levels. Depicted are the averages over

performance measures for male and female speakers. These
results demonstrate that the proposed MAP-B method obtains
lower LEm values for all noise types and SNRs less than or
equal to 5 dB. For ’Triangular WGN’ and ’Factory-1’ the
LEm of the MAP-B estimator is better as well for an SNR
of 10 dB. Further the MAP-B estimator yields lower vari-
ance LEv of the logarithmic difference for all noise types
and SNRs than the IMCRA estimator. Fig.3 (c) shows the
gains PESQGain = PESQMAP-B − PESQIMCRA of scores
for the perceptual speech quality obtained by PESQ [7] cal-
culated using the enhanced signals X̂(II)

l and X̂(I)
l for fe-

male and male speakers separately. As expected, the im-
proved noise tracking has a favourable, though small, effect
on speech quality for non-stationary noise types.

5. CONCLUSION

We have proposed a new approach for the noise PSD estima-
tion in a speech enhancement system. It is based on the max-
imum a posteriori estimation of the noise variance of a non-
stationary complex white Gaussian process in the presence of
an additive Gaussian interference of known variance. In con-
trast to most known noise PSD estimators it is able to track
the noise statistics even if the speech is dominant in noisy
speech. The method has low computational complexity and
has only one parameter which has to be adjusted according to
the degree of non-stationarity of the noise. The experimental
evaluation has shown that MAP-B obtains a lower estimation
error under low SNR conditions and a lower fluctuation of
the estimated values under all tested environments, resulting
in an improved speech quality for non-stationary noise types
as measured by PESQ scores.
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