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ABSTRACT

Several investigations showed that speech enhancement approaches
can be improved by speech presence uncertainty (SPU) estimation.
Although there has been a strong focus on the use of correct statisti-
cal models for spectral weighting rules for the last few decades, there
is just a few publications about SPU estimation based on a speech
prior consistent with the spectral weighting rule. This contribution
presents a new consistent solution for MMSE speech amplitude (SA)
estimation under SPU, being based on the generalized gamma dis-
tribution representing a variety of speech priors. Employing the
gamma speech model which is a special case of the generalized
gamma distribution, the new approach is shown to outperform both
the SPU-based MMSE-SA estimator relying on a Gaussian speech
prior, and the gamma MMSE-SA estimation without SPU.

1. INTRODUCTION

Speech enhancement has been a vital field of research for the last
few decades. Maybe most publications on this topic are written
about the improvement of spectral weighting rules, covering dif-
ferent optimization criteria (such as minimum mean square error
(MMSE) [1–4] or maximum a posteriori (MAP) [3, 5]), or different
statistical models for the speech and/or noise DFT coefficients (such
as Gaussian [1, 6], and non-Gaussian [2–5]).
Amongst others, Martin [4] and Lotter et al. [5] showed that the
speech DFT coefficients follow a distribution which has a sharper
peak than the Gaussian probability density function (pdf). These
distributions are called super-Gaussian (such as Laplace, gamma,
etc.). It was shown in several papers [2–5] that the use of the gamma
speech prior achieves better results than the Gaussian.
With the generalized gamma distribution [2], Erkelens et al. intro-
duced a quite flexible parametric statistical model of the speech DFT
coefficients which advantageously covers a wide range of typically
employed speech magnitude densities.
Unfortunately, super-Gaussian pdfs do not allow for an analytical
solution of the MMSE-SA error criterion [2, 3]. Therefore, in [2] an
approximative analytical solution, and in [3] a numerical solution
was used for the calculation of the spectral weighting rule.
Further improvement is typically obtained exploiting the speech
presence uncertainty (SPU). In [1] Ephraim and Malah showed that
under an MMSE error criterion the SPU estimation turns out to
be a multiplicative pre-factor, called soft weights, for the common
spectral weighting rule. Furthermore, an SPU estimator based on a
Gaussian speech model was presented.
The derivation of the SPU estimation requires the pdf of the
complex-valued noisy speech signal, which can be determined
as a convolution of the (bivariate) speech and noise pdfs (i. e., with a

complex argument). For the noise, generally the bivariate Gaussian
distribution is employed. In order to model the bivariate speech
pdf for purpose of the convolution, in [6] the real and imaginary
parts of the speech DFT coefficients are assumed being statistically
independent. In [2], however, it was shown that they are indeed
uncorrelated, but not independent. Additionally, it was pointed out
that the bivariate histogram of the complex-valued speech DFT co-
efficients is approximately rotationally symmetric.
We present in this paper a new MMSE-SA estimator under SPU
assuming gamma speech priors throughout. To achieve this, we
first recapitulate briefly the derivation of the MMSE-SA estimator
under generalized gamma priors (see also [2]). Then, employing
the parameters of a gamma distribution which is a special case of
the generalized gamma pdf, the result turns out to be the spectral
weighting rule proposed in [3].
In analogy to the MMSE-SA estimator above, our new SPU esti-
mator is first derived under a generalized statistical model for the
speech, offering a wide flexibility of choice between different speech
priors. For this, the univariate generalized gamma distribution [2] is
extended to complex variables, resulting in a bivariate generalized
gamma distribution. Advantageously, this new pdf does not use
the assumption that the real and imaginary parts of the speech DFT
coefficients are statistically independent. As with the weighting
rule, for the further derivation of the soft weights then the gamma
distribution is employed. Both the MMSE-SA spectral weighting
rule as well as the soft weights of Ephraim and Malah [1] turn out to
be a special case of our new pdf-generalized approach.
Our paper is organized as follows: Section 2 gives a short review
of the reference MMSE-SA estimators with Gaussian and gamma
speech priors, respectively. Section 3 presents the reference and the
new SPU estimator based on Gaussian and gamma speech priors,
respectively, followed by the evaluation of the proposal in Section 4.
Finally, Section 5 gives some concluding remarks.

2. SPEECH SPECTRAL MAGNITUDE ESTIMATION

The input signal y(n) of a speech enhancement system is assumed
to consist of the clean speech signal s(n) and the additive noise sig-
nal n(n), with n being the discrete time index. After segmenta-
tion, windowing, and the discrete Fourier transform (DFT), the in-
put signal can be rewritten as Y (�, k) = S(�, k) + N(�, k) with �
being the analysis frame index, k being the frequency bin index.
Using polar coordinates, the input signal can be reformulated as
R(�, k)ejΘ(�,k) = A(�, k)ejα(�,k) + B(�, k)ejβ(�,k) where R, A,
B, (Θ, α, β) are the magnitudes (phases) of the short-time spectra
Y , S, and N , respectively. Note that in the majority of the paper we
omit frame index � and frequency bin index k.
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Fig. 1. Spectral amplitude (SA) estimators with Gaussian (GG) and
gamma (GΓ) speech priors as a function of the a posteriori SNR γ
at two different a priori SNRs ξ = −5 dB and 5 dB.

The aim of the speech enhancement algorithm is to obtain a clean
speech estimate Ŝ (or its magnitude Â) given the noisy input sig-
nal Y . As shown in [1], the estimation of the clean speech mag-
nitude A under the minimum mean square error (MMSE) criterion
min
Â

E{(Â−A)2|Y } leads to

Â = E{A|Y } =

∞∫
0

2π∫
0

A · p(Y |A,α) · p(A,α) dαdA

∞∫
0

2π∫
0

p(Y |A,α) · p(A,α) dαdA

, (1)

with p(Y |A,α) and p(A,α) being the conditional pdf of the noisy
signal Y given speech, as well as the joint pdf of the clean speech
magnitude A and phase α, respectively. The DFT coefficients of the
additive noise N are assumed being Gaussian distributed, therefore,
p(Y |A,α) turns out to be

p(Y |A,α) =
1

πσ2
N

e
−

|Y −Aejα|2

σ2

N , (2)

with σ2
N being the variance of the additive noise process N . If the

magnitude of the speech DFT coefficients is modeled by the general-
ized gamma pdf assuming independence between speech magnitude
A and phase α [2], then the joint pdf p(A,α) turns out to be

p(A,α) = p(α) · p(A) =
1

2π
· ηβν

Γ(ν)
Aην−1e−βAη

, (3)

with η, β, ν being the parameters of the generalized gamma pdf, and
Γ(·) being the gamma function. Substituting (3) and (2) as well as
doing some manipulations by means of [7, (8.431.5)], (1) turns out
to be [2]

Â =

∞∫
0

Av · e−
1

σ2

N

A2−βAη

· I0(2 R

σ2

N

A)dA

∞∫
0

Av−1 · e−
1

σ2

N

A2−βAη

· I0(2 R

σ2

N

A)dA

, (4)
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Fig. 2. Speech presence uncertainty (SPU) estimators (soft weights)
with Gaussian (Gsoft

G ) and gamma (Gsoft
Γ ) speech priors with q = 0.2

as a function of the a posteriori SNR γ at two different conditional
a priori SNRs ξ′ = −5 dB and 5 dB.

with I0(·) being the modified Bessel function of the first kind and
zeroth order. Employing the Gaussian parameters η = 2, β = 1/σ2

S

with σ2
S being the speech spectral variance and ν = 1, (4) leads to

the well-known MMSE-SA weighting rule GG with Â = R · GG

(index G denotes the Gaussian speech prior) [1]

GG = Γ(1.5)

√
v

γ
M(−0.5; 1;−v), (5)

with v = γξ/(1+ξ), and γ = R2/σ2
N , ξ = σ2

S/σ
2
N , M(·) being the

a posteriori signal-to-noise ratio (SNR), the a priori SNR, as well as
the confluent hypergeometric function, respectively. This weighting
rule GG is plotted as dashed lines in Figure 1.
Now we want to derive the MMSE-SA weighting rule under gamma
speech prior (applying η = 1 and β =

√
ν(ν + 1)/σS according

to [2]). It was shown in [2, 3] that for η = 1 (4) cannot be solved
analytically. Therefore, a numerical solution was sought as it was
done in [3]. In order to make the solution Â dependent on ξ and γ,
the variable of integration A is substituted by Rg. Thus, (4) becomes

Â = R ·

∞∫
0

gv · e−γg2−
√

ν(ν+1)
√

γ
ξ
g · I0(2γg)dg

∞∫
0

gv−1 · e−γg2−
√

ν(ν+1)
√

γ
ξ
g · I0(2γg)dg

. (6)

Since Â = R ·G, (6) can be rewritten as

GΓ =
Ψ(0)

Ψ(1)
, (7)

with Ψ(c) =

∞∫
0

gv−c · e−γg2−
√

ν(ν+1)
√

γ
ξ
g · I0(2γg)dg.

Different to the proposal of Andrianakis and White [3] which is
based on performance measurements of the estimator, we used the
shaping parameter of the gamma pdf ν = 1.126 suggested by Lot-
ter and Vary [5] which is based on a matched statistical model. GΓ

was then computed by means of the adaptive Gauss-Kronrod quadra-
ture [8], which can be seen in Figure 1 as solid lines.
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3. SPEECH PRESENCE UNCERTAINTY

As published in [1], the MMSE-SA estimation under SPU Â′ =
G′ ·R turns out to be the multiplicative relationship of the common
spectral weighting rule G and the soft weights Gsoft:

G′(γ, ξ′) = G(γ, ξ′) ·Gsoft(γ, ξ′), (8)

employing ξ′ = E{A2|H1}/σ2
N being the conditional a priori SNR

supposing speech presence. Hypotheses H0 and H1 denote speech
absence and presence, respectively. The soft weights can be calcu-
lated by means of the so-called likelihood ratio Λ

Gsoft =
Λ

1 + Λ
, (9)

where Λ is defined as

Λ =
P (H1)

P (H0)
· p(Y |H1)

p(Y |H0)
, (10)

with P (H0) = q, P (H1) = (1− q), p(Y |H0), and p(Y |H1) being
the speech absence and presence probability, as well as the pdf of the
noisy signal Y assuming speech absence and presence, respectively.
In speech absence H0, assuming a Gaussian noise model, p(Y |H0)
turns out to be

p(Y |H0) =
1

πσ2
N

e
−

|Y |2

σ2

N . (11)

In speech presence H1, the distribution of the noisy signal as a sum
of the clean speech and noise signal p(Y |H1) = p(Y ≡ S + N)
is needed. Assuming the speech S and the additive noise N being
statistically independent random processes, p(Y |H1) turns out to be

p(Y |H1) = p(Y ≡ S) ∗ p(Y ≡ N), (12)

where ∗ denotes the convolution operation. Please note the identity
p(Y ≡ N) = p(Y |H0).
Employing again a generalized pdf to allow for a free choice of
different speech priors, and assuming that the pdf of the (complex-
valued) speech DFT coefficients is zero-mean and rotationally sym-
metric, the noisy speech signal Y in presence of speech and in
absence of noise can be described by a new bivariate generalized
gamma distribution:

p(Y ≡ S) =
1

2π
· ηβν

Γ(ν)
· |Y |ην−2 · e−β|Y |η , (13)

with Y ∈ C. The relation between this bivariate (13) and the univari-
ate (3) generalized gamma distribution is shown in the Appendix.
After substituting (13) and (11) into (12), and using polar coordi-
nates to solve the complex convolution integral, applying again a
variable substitution, the likelihood ratio Λ in (9) for our new soft
weights is (index gΓ denotes the generalized gamma speech model)

ΛgΓ =
(1− q)

q
· ηβν

Γ(ν)

∞∫
0

xην−1e−βRηxη

e−γx2

I0(2γx)dx, (14)

with x ∈ R. Substituting the Gaussian parameters η = 2, β = 1/σ2
S

and ν = 1, (14) exactly reduces to Ephraim-Malah’s likelihood ratio
[1] (index G denotes the Gaussian speech model)

ΛG =
(1− q)

q

ev

1 + ξ′
, (15)

with v = γξ′/(1 + ξ′). The resulting soft weights Gsoft
G for q = 0.2

are plotted in Figure 2 as dashed lines.

Applying the gamma parameters η = 1, and β =
√

ν(ν + 1)/σS ,
(14) turns out to be analytically not solvable [2]. Therefore, again,
the adaptive Gauss-Kronrod quadrature [8] was used employing the
shaping parameter ν = 1.126. The resulting soft weights Gsoft

Γ for
q = 0.2 are plotted in Figure 2 as solid lines.

4. EVALUATION

In order to show the merit of the proposed SPU-based estimator, we
performed the following simulations: A total of 96 speech signals
(spoken by four male and four female speakers) was taken from
the NTT Multi-Lingual Speech Database [9], and downsampled to
8 kHz sampling rate. Car noise signals were taken from the NTT
Ambient Noise Database [10]. The active speech level was set to
−26 dBov, the noise signal level was adjusted to the desired input
SNR, according to ITU-T Recommendation P.56 [11], followed by
superposition of both signals. At a sampling frequency of 8 kHz,
the segmentation of the noisy speech signal y(n) was done by a
Hann window, the analysis frame length was T = 256 samples, the
analysis frame shift took 128 samples.
As noise power estimation, we applied the minimum statistics (MS)
algorithm [12]. In order to estimate the a priori SNR ξ, the widely
employed decision-directed estimator [1] was used. Following [1],
the value of the smoothing factor β was 0.98, and 0.99, for exper-
iments without and with SPU estimation, respectively. Then, the
spectral weighting rules introduced in Section 2 were utilized as
a table lookup with both γ and ξ varying from −20...+20 dB in
0.4 dB steps. The soft weights were also calculated numerically
with q = 0.2 according to [1] and implemented also as table lookup,
in the same fashion as the spectral weighting rules. Please note
that employing (8), the conditional a priori SNR assuming speech
presence has to be computed as ξ′ = ξ/(1− q).
We evaluated the performance of the proposed approach w. r. t. the
speech component quality and the amount of noise suppression.
Given a noisy speech signal y(n) we employed the respective clean
speech s̃(n) and noise component ñ(n) of the enhanced signal
ŝ(n) = s̃(n) + ñ(n). Through the clean speech signal s(n) and
its processed replica s̃(n), the speech preservation performance
was represented by the segmental speech to speech distortion ratio
(SSDR) [13]:

SSDRseg =
1

NΦ

∑
�∈Φ

SSDR(�) (16)

SSDR(�) = li

{
10 log10

∑T

τ=1 s
2(τ + �T )∑T

τ=1 e
2(τ + �T )

}
(17)

where e(n) = s(n) − s̃(n), Φ is the set of frames belonging to
speech activity, NΦ = |Φ| is the number of frames with speech ac-
tivity, and the operator li{·} limits SSDR(�) to [-10,30] dB.
Meanwhile, we assessed the noise attenuation performance by com-
puting the segmental noise attenuation measure based on the noise
signal n(n) and the processed noise component ñ(n) [13]:

NAseg = 10 log10
1

L

L∑
�=1

∑T

τ=1 n
2(τ + �T )∑T

τ=1 ñ
2(τ + �T )

(18)

where L is the total number of frames.
In Figure 3 the reference MMSE-SA weighting rule with (Gaussian
assumption) and without (Gaussian and gamma assumption) SPU
estimation are shown along with the proposed MMSE-SA estima-
tion under SPU (gamma assumption throughout) for different input
SNR values. The optimum in Figure 3 resides in the right top corner,
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which means a significant noise reduction and a good quality of the
(naturally noise-free, but potentially distorted) speech component,
simultaneously. It can generally be said that at higher input SNRs
a better speech preservation can be observed, reflected by higher
SSDR values. Meanwhile, at very low input SNRs greater noise
suppression can be obtained. Please note, that for ease of compar-
ison a noise overestimation factor was used and adjusted in such a
way that all four approaches achieve the same clean speech compo-
nent quality at −5 dB input SNR. It turns out that in consequence
the compared approaches only differ w. r. t. noise attenuation.
It can clearly be seen that the amount of noise suppression of
Ephraim and Malah’s MMSE-SA weighting rule can be improved of
approximately 2.5 dB by using SPU estimation based on the Gaus-
sian speech model. The spectral weighting rule based on a gamma
speech prior performs roughly 3.5 dB better than the Gaussian-based
one. The new MMSE-SA estimator under SPU based on a gamma
speech prior achieves another 1.5 dB more noise suppression, clearly
outperforming all other approaches. The merit of the proposal was
supported by informative listening tests.

5. CONCLUSION

This paper presents an MMSE speech spectral amplitude estima-
tion with speech presence uncertainty (SPU) estimation. Both the
spectral weighting rule and the SPU estimator are optimal w. r. t. the
MMSE criterion and are based consistently on gamma speech priors.
It is shown that extending the gamma MMSE-SA weighting rule
by soft weights based on gamma speech priors, the noise suppres-
sion performance can significantly be improved, without any quality
degradation of the speech component.

6. APPENDIX

Taking the bivariate generalized gamma distribution from (13) with
the complex-valued variable Y = YRe + jYIm, we are interested in
the pdf of the distribution of R = |Y | =

√
Y 2

Re + Y 2
Im. Accord-

ing to [14], the (cumulative) distribution function of R can be cal-
culated by integration of (13) w. r. t. Y on a circle with a radius of

|Y |. Moreover, the first derivative of the (cumulative) distribution
function yields then the probability density function of the magni-
tude R = |Y |. Using polar integration with the integration variable
r = |Y | as well as dY = rdθdr we get

p(R) =
∂

∂R

R∫
0

2π∫
0

1

2π

ηβν

Γ(ν)
rην−2e−βrηrdθdr. (19)

Solving the integral w. r. t. θ and using that ∂
∂ρ

ρ∫
0

g(ζ)dζ = g(ρ),

(19) turns out to be the univariate generalized gamma pdf p(A) as
known from [2] and (3).
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