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ABSTRACT

This paper proposes a new single/multi-channel speech enhance-
ment approach based on a LogMax observation model integrated
with Gaussian mixture models of speech and noise mel-frequency
cepstral coefficients (MFCC-GMM). It has been reported that the
LogMax observation model has high potential for reducing highly
nonstationary noise, for example, when it is combined with facto-
rial hidden Markov models. In addition, it has recently been shown
that a source location based speech enhancement approach can be
easily incorporated into this model for more efficient and reliable es-
timation. However, the unique structure of the LogMax model has
prevented us from using it with MFCC-GMMs, which is a funda-
mental limitation of this approach. Our proposal in this paper is
aimed at overcoming this limitation. Experiments using the PAS-
CAL CHiME separation and recognition challenge task show the
superiority of the proposed approach as regards both speech quality
and automatic speech recognition performance.
Index Terms: Speech enhancement, mel-frequency cepstral coeffi-
cients, automatic speech recognition, model-based approach

1. INTRODUCTION

When we capture our daily speech using distant microphones, vari-
ous types of ambient noise, including time-varying noise, are mixed
with the captured signals, and severely degrade the audible quality
of the speech and the automatic speech recognition (ASR) perfor-
mance.

To solve this problem, model-based noise reduction approaches
have been extensively studied, where statistical models of speech
log-spectra are utilized as prior knowledge to improve the noise re-
duction performance. A vector Taylor series (VTS) approximation
approach [1] has been widely used for reducing stationary/slowly
time-varying noise. Another important approach is based on the
LogMax model [2], and has been proposed to cope well with highly
nonstationary noise, such as extraneous speakers. This model as-
sumes that the observed spectral value at each time frequency is
equal to the maximum speech and noise spectral values, and the
noise reduction is accomplished by finding a pair of log-spectra for
speech and noise that best fits the observation. For more efficient
and reliable estimation, a new technique has recently been proposed
that extends the LogMax model approach to multi-microphone cases
[3], where the location features of the speech and noise are utilized
jointly with the spectral characteristics modeled by GMMs. It is re-
ferred to as DOminance based Locational and Power-spectral cHar-
acteristics INtegration (DOLPHIN), and has been shown to achieve
accurate noise reduction even under highly nonstationary noise con-
ditions, and to improve the ASR performance greatly [4].

With the LogMax model based noise reduction, we need to eval-
uate which of speech and noise has a larger spectral value at each

time-frequency bin, and to do this in a computationally tractable
way, the existing approaches assume that the spectral values over
different frequencies are statistically independent of each other given
the GMM indices [2], dealing with the indices as the parameters to
be estimated. However, the characteristics of actual speech do not
well meet this assumption, and thus the accuracy of the speech model
is limited based on this assumption. For example, although MFCC-
GMMs are currently thought to be one of the best statistical mod-
els for speech log-spectra, the existing approaches with the LogMax
model cannot adopt them as the spectral models because the spectral
values over different frequencies are essentially correlated when the
corresponding MFCCs follow a Gaussian distribution.

This paper proposes a new estimation setting for DOLPHIN that
allows us to use MFCC-GMM spectral priors with it. In this set-
ting, the MFCCs are assumed to be generated by MFCC-GMMs,
and their log-spectra are generated depending on the MFCCs, where
the values of the log-spectra are assumed to be statistically indepen-
dent over different frequencies given the MFCCs. Furthermore, the
MFCCs of speech and noise are handled as parameters to be esti-
mated based on Maximum a Posteriori (MAP) estimation. This set-
ting allows DOLPHIN to evaluate efficiently which of speech and
noise log-spectra has a larger value at each frequency, and thus to
perform a computationally efficient noise reduction with MFCC-
GMMs. In the rest of this paper, we first present a new formulation
for DOLPHIN in Section 2, using a monaural speech enhancement
scenario, namely a scenario without location features. We refer to
this as DOLPHIN-MFCC-1ch, or DOLPHIN-MC1 for short. In Sec-
tion 3, we extend DOLPHIN-MC1 to cope with locational features.
The resultant algorithm is referred to as DOLPHIN-MC2. Section 4
provides experimental results showing the superiority of both pro-
posed methods in terms of the audible quality and ASR of the en-
hanced speech compared with conventional approaches.

2. FORMULATION FOR MONAURAL PROCESSING

Suppose x = [x1, x2, . . . , xK ] is a log-mel filterbank output of an
observed monaural signal at a time frame, where xk is its k-th fre-
quency element. Because the method proposed in this paper is ap-
plied to each time frame independently, the time frame indices of
symbols are omitted hereafter. Based on the LogMax model, the
observed signal is modeled as

xk = max{s(1)k , s
(2)
k }, (1)

where s(l) = [s
(l)
1 , . . . , s

(l)
K ] for l = 1 and l = 2, respectively, are

the unknown filterbank outputs of the speech and the noise. Here-
after, l is used as the index of the two sources, namely the speech
(l = 1) and the noise (l = 2). Letting H be a discrete cosine trans-
formation matrix, a pair of MFCCs for s(1) and s(2) are defined as

c = {c(1), c(2)} where c(l) = Hs(l). (2)
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DOLPHIN-MC1 deals with the MFCCs as parameters to be esti-
mated by the MAP estimation, which is defined as

ĉ = argmax
c

p(x, c). (3)

Using the estimated MFCCs, we then estimate clean speech spec-
tra based on the minimum mean squared error (MMSE) estimation,
which is defined as (14) in Section 2.2.

To solve the above problem, DOLPHIN-MC1 employs a gener-
ative model of the observed log-mel filterbank outputs as illustrated
in Fig. 1 and the relationships defined in the following:

p(c(l)) =
∑
i(l)

p(i(l))p(c(l)|i(l)) (4)

p(s(l)|c(l)) = N (s(l); g(c(l)),Ξ). (5)

In (4), the MFCC c(l) for each l is assumed to be generated by
an MFCC-GMM. p(i(l)) and p(c(l)|i(l)) are a mixture weight and
a Gaussian probability density function (pdf) of the i(l)-th compo-
nent, respectively, and assumed to be trained in advance. In (5), we
assumed that s(l) can be predicted from c(l) by a linear regression1
g(c(l)), and the prediction error follows a Gaussian pdf with a zero
mean and a diagonal covariance matrixΞ = diag{ξk}. Then, similar
to the conventional DOLPHIN approach, we introduce the following
equations to deal with the LogMax model (1) in a probabilistic form.

p(xk|dk, s(1)k , s
(2)
k ) = δ(xk − s

(dk)
k ) (6)

p(dk|s(1)k , s
(2)
k ) =

{
1 when dk = argmaxl s

(l)
k

0 otherwise,
(7)

where d = [d1, . . . , dK ] is a set of dominant source indices (DSI)
that indicate which of speech (dk = 1) and noise (dk = 2) has the
larger energy at frequency k. δ(·) is the Dirac delta function. Then,
the relationship between xk, dk, and c can be derived based on (5),
(6), and (7), with marginalization over s(1)k and s(2)k as

p(xk, dk|c) =

∫∫
p(xk, dk|s(1)k , s

(2)
k )

∏
l

p(s
(l)
k |c(l))ds(1)k ds

(2)
k

= p(s
(dk)
k = xk|c(dk))

∫ xk

−∞
p(s

(d′k)
k |c(d′k))ds(d′k)k ,(8)

where d′k is a non-dominant source index. The MAP function
p(x, c) in (3) can finally be defined as

p(x, c) =

⎛
⎝∏

k

∑
dk

p(xk, dk|c)
⎞
⎠

⎛
⎝∏

l

∑
i(l)

p(c(l), i(l))

⎞
⎠ , (9)

where dk and i(l) are hidden variables. The first component on the
right hand side reflects the LogMax model, while the second com-
ponent reflects the MFCC-GMMs. With the above function, the
MFCCs are estimated based on both models.

One important feature in the above setting is that the joint pdf
of x and d given the parameters to be estimated, or (8) in the above
case, is in a simple form, namely it is defined separately for individ-
ual frequencies. This simple form allows us to derive the compu-
tationally efficient estimation procedure described in the following

1For example, g(c(l)) can be a pseudo-inversion of H . In our experi-
ments, we parameterized g(c) as g(c) = Ac+b, and setA and b as values
that minimize E{|s − g(c)|2} in a training data set. We then set ξk as the
average squared error at a frequency k.

(l=1)Speech Noise (l=2)
s(1)c(1)i (1) s(2) c(2) i(2)

d

x

Fig. 1. Graphical model of DOLPHIN-MC1.

paragraphs. Note that, to obtain this simple form, we handle the
MFCCs as parameters to be estimated by the MAP estimation, and
assume that the covariance matrix of p(s(l)|c(l)) in (5), namely Ξ,
is diagonal. By contrast, if we deal with the Gaussian index pair
i = {i(1), i(2)} as parameters to be estimated similar to the con-
ventional DOLPHIN approach and marginalize the generative model
over the MFCC pair c = {c(1), c(2)}, we can no longer utilize a
simple form such as that in (8) because the covariance matrix of
p(s(l)|i(l)) can never be diagonal with the MFCC-GMMs.

2.1. MAP estimation of MFCCs

Because theMAP function (9) includes hidden variables, DOLPHIN-
MC1 uses the expectation maximization (EM) algorithm for the
maximization, where the MFCCs are estimated by iterating the E-
and M-steps derived with the EM algorithm. The auxiliary function,
Q(c|ĉ) = E{log p(x,d, c, i)|ĉ} =

∑
k E{log p(xk, dk|c)|ĉ} +∑

l E{log p(c(l), i(l))|ĉ}, can be expanded as
Q(c|ĉ) =

∑
l

Q(l)(c(l)|ĉ) (10)

Q(l)(c(l)|ĉ) =
∑
k

Ψk(c
(l); ĉ) +

∑
i

Z
(l)
i log p(c(l)|i(l) = i) (11)

Ψk(c
(l); ĉ) = D

(l)
k log p(s

(l)
k = xk|c(l))

+(1−D
(l)
k ) log

∫ xk

−∞
p(s

(l)
k |c(l))ds(l)k (12)

D
(l)
k = p(dk = l|xk, ĉ) and Z

(l)
i = p(i(l) = i|ĉ(l)). (13)

D
(l)
k and Z

(l)
i are posteriors of the hidden variables, dk and i(l),

updated in E-step. Q(l)(c(l)|ĉ) in (11) is the MFCC matching func-
tion used in M-step. Because (11) only contains c(l) for a certain
l, we can update the MFCCs of each source independently in M-
step, which is a unique advantage of the DOLPHIN approach. The
first and the second terms in (11) reflect the LogMax model and the
MFCC-GMMprior, respectively. In addition, the first and the second
terms in (12) ensure that the dominant and non-dominant sources
take the same value as the observed value and any value smaller than
the observed value, respectively.

One issue that makes the maximization somewhat complex is
the treatment of the second term in (12). To maximize a function
with such a non-linear term, we can generally use a gradient-descent
approach. In particular, as discussed in [3], the partial derivative
of this term on an MFCC dimension has a hinge function shape, so
we can adopt the simplest gradient-descent approach, namely the
Newton-Raphson method, for the maximization. Our preliminary
experiments revealed the numerical stability and effectiveness of this
method. In our experiments, we calculated the first and second order
derivatives of the second term in (12) using the Matlab error function
“erfcx”.

2.1.1. Processing flow of MAP estimation

1. Initialize ĉ(l) for all l as MFCCs of x.
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2. Iterate the following until convergence is achieved.

(a) UpdateD(l)
k and Z(l)

i for all k, l, and i, as follows.

D
(l)
k =

p(xk, dk = l|ĉ)
∑

dk
p(xk, dk|ĉ)

and Z(l)
i =

p(i(l) = i)p(ĉ(l)|i(l) = i)
∑

i(l) p(i
(l))p(ĉ(l)|i(l)) .

(b) Update ĉ(l) for each l as

ĉ(l) = ĉ(l)−
(
∂2Q(l)(c(l)|ĉ)

∂c(l)
2

)−1 (
∂Q(l)(c(l)|ĉ)

∂c(l)

)
,

where ∂Q(l)(c(l)|ĉ)
∂c(l)

and ∂2Q(l)(c(l)|ĉ)
∂c(l)

2 are a gradient
vector and a Hessian matrix of Q(l)(c(l)|ĉ), respec-
tively.

2.1.2. Variation of spectral models

Because MFCCs are dealt with as parameters to be estimated in the
MAP estimation, the update of each source model in E-step, or the
update of Z(l)

i with the above procedure, can be separated from the
other parts of the estimation. This allows us to introduce different
types of spectral models in a rather flexible manner without greatly
increasing the computational complexity. For example, the introduc-
tion of hidden Markov models for MFCCs is very straightforward.
In addition, the adaptation of the model parameters given the obser-
vation can also be included in a straightforward way.

Here,let us define another useful spectral model for noise, for
which all the model parameters are estimated from the observed sig-
nals with no prior training. This model is referred to as MFCC-GM,
and is composed of a single Gaussian model defined as p(c(2)) =

N (c(2);μ,Σ). In the MAP estimation with this model, we update
the model parameters, μ and Σ, in M-step, instead of updating the
posterior Z(2)

i in E-step. Because we have estimated values, ĉ(2),
μ and Σ are calculated simply as a mean and a covariance matrix
of ĉ(2) over all time frames. In our preliminary experiments using
the CHiME Challenge database [5], for the noise model, MFCC-GM
with no prior training was superior to MFCC-GMM with no model
adaptation. This is probably because the noise in the database is
so diverse that an MFCC-GMM cannot represent the pdf precisely
without any adaptation to the observation. So, we use an MFCC-GM
for the noise model in the experiments described in this paper.

2.2. MMSE estimation of log-power spectra

Because the goal of this paper is speech enhancement, we estimate
high-resolution spectra of clean speech in the log-power spectral do-
main, denoted by s̃(1), based on the MMSE estimation, which is
defined as

ˆ̃s(1) =

∫
s̃(1)p(s̃(1)|x, ĉ)ds̃(1). (14)

For this estimation, we introduce a linear regression2 g̃(c(l)) that
predicts s̃(l) from c(l) as

p(s̃(l)|c(l)) = N (s̃(l); g̃(c(l)), Ξ̃). (15)

Then, the MMSE estimation of s̃(1) becomes

ˆ̃s
(1)

k̃
= D̃

(l)

k̃
x̃k̃ + (1− D̃

(l)

k̃
)

∫ x̃k

−∞ s̃k̃p(s̃k̃|ĉ(l))ds̃k̃∫ x̃k

−∞ p(s̃k̃|ĉ(l))ds̃k̃
, (16)

2In our experiments, we also parameterized g̃(c(l)) as g̃(c(l)) =

Ãc(l) + b̃, and determined the parameters using a training data set.

where k̃ is a frequency index in the log-power spectral domain, x̃k̃

is the log-power spectral value of the observation, and D̃
(l)

k̃
is the

posterior of a DSI defined in the log-power spectral domain and cal-
culated using the estimated MFCC ĉ(l) and p(s̃(l)|c(l)) in (15) in a
way similar to that forD(l)

k in the filterbank domain.
The enhanced speech waveform is then calculated by using an

inverse Fourier transform of exp(ˆ̃s(1)) with the phase of the ob-
served signal followed by overlap-add synthesis.

3. INCORPORATION OF LOCATION MODEL

Similar to the conventional DOLPHIN approach, we can incorporate
location based speech enhancement techniques [6] into DOLPHIN-
MC1. We refer to this as DOLPHIN-MC2. In this paper, we intro-
duce the same technique used in [4]. Because of the limited space,
this paper only provides an outline of the method.

Let a = [a1, . . . , aK ] be additional observed features, referred
to as location features, used for this incorporation, and p(a(l)

k ) be a
pdf of the location feature of the l-th source. We assume that p(a(l)k )

can be fixed in advance3 based on prior training as in [4]. Then, we
obtain L(l)

k = p(a
(l)
k )/

∑
l p(a

(l)
k ), which we refer to as normalized

location posteriors, at all frequencies k. Finally, to incorporate the
location model in the MAP estimation of DOLPHIN-MC1, we only
need to modify the update ofD(l)

k in step 2(a) as

D
(l)
k =

L
(l)
k p(xk, dk = l|ĉ)∑
dk

L
(dk)
k p(xk, dk|ĉ)

. (17)

For the MMSE estimation of log-power spectra, D̃(l)

k̃
can also be

estimated using L̃(l)

k̃
defined in the log power spectral domain. L(l)

k

and L̃(l)

k̃
can be calculated using a technique proposed in [4].

4. EXPERIMENTS

To evaluate DOLPHIN-MC1 (Prop-1ch) and DOLPHIN-MC2
(Prop-2ch), we used the PASCAL CHiME speech separation and
recognition challenge database [5]. We adopted the same feature
extraction procedure used in [4]. Spectral features, x, were extracted
after applying the delay-and-sum beamformer to the observed 2ch
signal to enhance the front signal, and was used in both methods.
Location features, a, were extracted from the observed 2ch signal,
and used by Prop-2ch. The frame size and shift were set at 100 ms
and 25 ms, respectively. As prior training, speaker dependent
MFCC-GMMs were trained on individual speakers in the training
set. The dimensions of the MFCCs and filterbank outputs were
set at 13 and 40, respectively, and the mixture component numbers
were set at 256. As noise, we used an MFCC-GM with no prior
training. A location model for speech and one for noise were trained
on their respective training sets, which were the same as used in [4].
We compared Prop-1ch with the VTS approach [1] (Conv-1ch) as
monaural speech enhancement techniques, and compared Prop-2ch
with the conventional DOLPHIN (Conv-2ch) proposed in [4] as
2ch speech enhancement techniques. The same analysis conditions
were adopted as those used in [4] for Conv-1ch and Conv-2ch. In
particular, Conv-2ch used the GMMs of high-resolution log-power
spectra for both speech and noise, and achieved the best performance
in [4]. Note that we also used Conv-2ch in the initialization step
of Prop-2ch because it achieved the best results in our preliminary
evaluation using the development set.

3Or p(a(l)k ) can also be learned from the observed signal as in [3].
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Fig. 2. Average CDs and average segmental SNRs of observed sig-
nals (development set), and those of speech signals enhanced by
Conv-1ch, Prop-1ch, Conv-2ch, and Prop-2ch.

4.1. Quality of enhanced speech

Figure 2 shows the dependence of the quality of the enhanced speech
on the signal-to-noise ratio (SNR) of the observation in terms of the
average cepstral distortion (CD) calculated over the 1st to 12th or-
der cepstral coefficients and the average segmental SNR. Segmental
SNRs were calculated by extracting the noise remaining in the en-
hanced speech by subtracting the clean speech from the enhanced
speech, and by calculating the power ratios of the clean speech to
the extracted noise.

Under all SNR conditions, Prop-1ch and Prop-2ch substantially
reduced the CDs and increased the segmental SNRs, and greatly
outperformed Conv-1ch and Conv-2ch, respectively. In particular,
Prop-1ch reduced the segmental SNRs much more than Conv-2ch
although Prop-1ch was based only on monaural processing.

4.2. PASCAL CHiME keyword recognition task

We also evaluated the quality of the enhanced speech in terms of
ASR performance. For the evaluation, we used the keyword recog-
nition task for the evaluation set in the PASCAL CHiME challenge
[5]. Acoustic models trained on clean speech (clean-condition train-
ing) and on enhanced speech (multi-condition training) were used
for the recognition. Multi-condition training data were artificially
created by adding noise from the training samples to the clean speech
training data at different SNRs. We used speaker dependent acoustic
models consisting of left-to-right HMMs trained with the SOLON
recognizer [7]. For the clean acoustic model, the total number of
HMM states was 254 and each state had 7 Gaussians. For the multi-
condition model, each HMM state had 20 Gaussians.

Table 1 shows the keyword recognition accuracy of each method
for the evaluation set. Again, both Prop-1ch and Prop-2ch were com-
parable to, or greatly outperformed Conv-1ch and Conv-2ch, respec-
tively, under all SNR conditions. In addition, as discussed in [8] in
details, we also expect the ASR performance to be further improved
combining this approach with other speech enhancement and robust
ASR techniques.

Table 1. Keyword recognition accuracy (%) for observed signals
(evaluation set), and for signals enhanced by Conv-1ch, Prop-1ch,
Conv-2ch, and Prop-2ch.

(a) Clean-condition training
SNR -6dB -3dB 0dB 3dB 6dB 9dB Ave

Observed 46.8 53.6 64.5 76.0 83.3 91.8 69.4
Conv-1ch 56.4 63.6 74.1 83.0 86.8 92.7 76.1
Prop-1ch 64.3 69.7 78.1 84.2 88.2 92.2 79.4
Conv-2ch 69.8 76.1 83.3 88.1 91.2 93.6 83.7
Prop-2ch 77.1 81.5 87.4 89.9 92.0 95.1 87.2

(b) Multi-condition training
SNR -6dB -3dB 0dB 3dB 6dB 9dB Ave

Observed 69.9 76.3 83.6 89.2 90.7 93.3 83.8
Conv-1ch 70.4 77.1 83.8 88.6 90.8 93.7 84.1
Prop-1ch 74.6 79.6 84.6 89.4 90.1 92.6 85.1
Conv-2ch 81.7 84.0 89.1 91.3 92.5 93.2 88.6
Prop-2ch 84.4 88.3 90.3 92.1 93.2 94.1 90.4

5. SUMMARY

This paper proposed a method for incorporating MFCC-GMM spec-
tral priors into a single/multi-channel speech enhancement approach
based on a LogMax observation model. The incorporation was made
possible by separating the generative process of speech/noise spec-
tra into the generation of MFCCs from GMMs and the generation
of spectral shapes from the MFCCs, and by handling the MFCCs
as parameters to be estimated using MAP estimation. In the exper-
iments, thanks to the use of the MFCC-GMMs, the proposed meth-
ods greatly improved the quality of speech under various noise con-
ditions in terms of cepstral distortions, segmental SNRs, and key-
word recognition accuracies using the PASCAL CHiME challenge
database.
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