
AUTOREGRESSIVE HMM SPEECH SYNTHESIS†

Carl Quillen

MIT Lincoln Laboratory,
Lexington MA 02420, USA

cbq@ll.mit.edu

ABSTRACT

Autoregressive HMM modeling of spectral features has been pro-
posed as a replacement for standard HMM speech synthesis. The
merits of the approach are explored, and methods for enforcing sta-
bility of the estimated predictor coefficients are presented. It appears
that rather than directly estimating autoregressive HMM parameters,
greater synthesis accuracy is obtained by estimating the autoregres-
sive HMM parameters by using a more traditional HMM recognition
system to compute state-level posterior probabilities that are then
used to accumulate statistics to estimate predictor coefficients. The
result is a simplified mathematical framework that requires no mod-
eling of derivatives and still provides smooth synthesis without un-
natural spectral discontinuities. The resulting synthesis algorithm in-
volves no matrix solves and may be formulated causally, and appears
to result in quality very similar to that of more traditional HMM
synthesis approaches. This paper describes the implementation of a
complete Autoregressive HMM LVCSR system and its application
for synthesis, and describes the preliminary synthesis results.

1. INTRODUCTION

Recently autoregressive modeling has been proposed as an alterna-
tive to the standard HMM approach[1]. It was proposed as a simpler
alternative to standard HMM synthesis techniques that use param-
eters derived from a standard HMM, e.g. [2, 3], or the more com-
plicated HMM trajectory model[4]. The autoregressive formulation
generatively models an observation distribution that is properly nor-
malized and that can directly be used to synthesize speech paramet-
rically without any audible discontinuities. Nevertheless while this
formulation performs better than an ordinary HMM system imple-
mented without making use of feature derivatives, it generally seems
to be inferior to HMM systems trained with them, and on its own it
results in an inferior synthesis system. Approaches to overcoming
these problems are explored below.

In its most basic form, autoregressive modeling uses a set of
predictor coefficients a1 . . . ar to predict an observation x(t) at time
t given the previous r − 1 observations x(t− i), for i ∈ 1 . . . r − 1:

x(t) ∼
r−1X
i=1

aix(t − i) + ar. (1)

Note the use of a constant offset ar here. The observations could be
scalar or vector, but for the purposes of this paper, we will only con-
sider separate autoregressive coefficients for each feature dimension,

† This work was sponsored by the United States Air Force Research
Laboratory under Air Force Contract FA8721-05-C-0002. Opinions, inter-
pretations, conclusions, and recommendations are those of the authors and
are not necessarily endorsed by the United States Government.

modeling prediction error in a diagonal Gaussian approach. (The
presentation is somewhat simplified below in places by presenting
only one scalar element of the feature vector.) One should also note
that the synthesis feature vectors will be derived from LSF parame-
ters, and are not the raw waveform itself.

In synthesis, the prediction coefficients are used to directly gen-
erate each new x(t). If the coefficients form a stable recursion then
we can view the constant offset ar as being related to a target �g
through the equation are0 = (I − A)�g, where e0 = (1, 0, . . . 0)T .
�x(t) will eventually approach �g as time t increases. This can be
understood by writing (1) in matrix-vector form. Let us denote by
�x(t) the vector composed of the (scalar) observation at current and
previous times:

�x(t) = (x(t), x(t − 1), . . . , x(t − r + 1))T .

Then �x(t) − �g = A(�x(t − 1) − �g) where

A =

0
BBB@

a1 a2 . . . ar−1

1 0
. . .

. . .
1 0

1
CCCA . (2)

If A has spectral radius less than one then we can expect �x(t) syn-
thesized from the prediction will eventually converge stably to the
target �g. Synthesizing speech then is a matter of picking the correct
regression coefficients and targets for each phonetic unit needed in
the desired utterance. Then the synthesis algorithm will (schemati-
cally) be something like the following:

• Given written text for a desired utterance, convert the words
using pronunciation dictionaries and letter-to-sound rules to a
list of desired phonetic units ordered by time.

• For each phonetic unit HMM state, assign a duration to it.

• For each frame in each HMM state, find the right set of pre-
diction coefficients to use. If Gaussian mixture models were
used to estimate prediction coefficients, this will involve a
choice of which Gaussian mixture was optimal in the context
of the utterance.

• Starting from an initial x(r − 1) . . . x(0), iterate using the
assigned a1(t) . . . ar(t) to generate all the x(t) across the ut-
terance.

This sequence of steps is causal and involves no matrix solves across
the utterance, although finding a good selection of Gaussian mixture
elements may require some lookahead.

4021978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

2. DIAGONAL GAUSSIAN AUTOREGRESSIVE
MODELING

Suppose we have a d-dimensional Gaussian mixture HMM observa-
tion density P for each HMM state s of the form

P (x(t)|x(t− 1) . . . x(t − r + 1), s) =

X
m

wm

dY
i=1

1p
2πvm

i

exp

„
−

1

2vm
i

(�ai(m) · �xi(t))
2

«
(3)

where the vector of of r + 1 predictor coefficients �ai(m) =
(a0

i , a
1
i , . . . a

r
i), with a0

i ≡ 1 and �xi(t) now denotes the i-th dimen-
sion of the observations at current and previous times concatenated
with 1:

�xi(t) = (xi(t), xi(t − 1), . . . , xi(t − r + 1), 1)T .

wm are scalar mixture weights
P

m wm = 1. Deriving update equa-
tions via the EM algorithm for this model is straightforward. The
E-step results in the update

�a′

i, v
′

i = arg max
�ai,vi

−
X

t

1

2vi

�aT
i Ri�ai +

1

2
log vi − λ(a0

i − 1),

where Ri(m) =
P

t γt(m)�xi�x
T
i /

P
t γt(m) is an autocorrelation

matrix. Maximizing this equation results in the following equations
for the updated values �a′

i, v
′

i :

�a′

i =
R÷

i e0

eT
0 R÷

i e0

, v′

i =
1

eT
0 R÷

i e0

(4)

Here R÷

i denotes the pseudo-inverse of Ri, which is the same as
the inverse when Ri is non-singular, and e0 is again the elementary
vector (1, 0 . . . 0)T . In the singular case where eT

o R÷

i e0 = 0, the
variance vi may be assigned a minimum value as a variance ‘floor’.
However this problem did not occur in any of the training sets ex-
plored here.

2.1. Controlling Stability of the Prediction Coefficients

Equation (4) contains no mechanism for controlling the spectral ra-
dius of the prediction matrix A in (2), and this is inadequate for
synthesis. If unstable coefficients are estimated in any phonetic unit,
during synthesis an exponential divergence in a feature parameter
may occur and it may well result in audible artifacts generated for
that unit. However A has a simple form, allowing the characteris-
tic polynomial to be calculated by inspection, which results in the
following equation for its eigenvalues λ :

λr−1 −

r−1X
i=1

aiλ
r−1−i = 0. (5)

Because the desired regression order is typically rather low, (r ∼ 3)
calculating the roots of this polynomial is very easy, and the spectral
radius may be directly estimated at low cost.

We propose two different methods for controlling the spectral
radius. One is to constrain a weighted norm of �a, as suggested in
[5]. This amounts to adding a constant to the diagonal of the auto-
correlation matrix R. A shooting method can be used to adjust the
constant amount added until the spectral radius ≤ 1. This approach
isn’t guaranteed to result in an iteration that increases likelihood, but

in practice it seems to work well. Another approach is to calculate
all roots of (5) and then normalize the magnitude of any that lie out-
side the unit circle. The coefficients of the resulting polynomial then
provide the updated �a. Again this may result in EM iterations which
lower likelihood, but nevertheless it appears to work well.

2.2. Front End Features for Synthesis

Synthesis and speech recognition are fundamentally different prob-
lems, and so we might expect that the optimal analysis features for
recognition and computing state/frame alignments would be differ-
ent than the ones best suited for synthesis. Fortunately, there is
no need to compromise in this regard. We can compute state and
Gaussian posterior probabilities for each Gaussian of a good recog-
nition system, and then use these posterior probabilities to accumu-
late counts for different analysis features. These counts can then be
used to estimate an observation probability model for the synthesis
HMM system. This is the approach used here. The synthesis fea-
tures used are described in [5]. They are log-differences of LSF’s,
pitch and a voicing log probability parameter. These parameters are
readily used to synthesize waveforms and appear to be well-modeled
in a diagonal-Gaussian framework.

2.3. Gaussian Selection

We attempted to implement Gaussian selection using a simplified
version of the method presented in [3]. This involved an iterative
selection similar to EM, but in the version that was tried, time align-
ments were chosen a-priori and not allowed to change. The end
result was a visually sharper and more pleasing spectrum, but unfor-
tunately it was less intelligible and resulted in a degradation in mea-
sured PESQMOS-LQO scores[6]. (See section 4.1 for a description
for how PESQwas used to evaluate the synthesis system.) Therefore
the results below are presented only in the single-Gaussian case. It
seems likely that a better Gaussian selection algorithm would ulti-
mately produce gains from mixture modeling.

2.4. Phone Duration

One approach to computing phone duration is to explicitly model it
in the HMM framework as in [3]. Because the experiments reported
here relied on a heavily modified HMM training and recognition sys-
tem that did not support this kind of duration modeling we created
a separate explicit duration model for each desired phonetic unit in
the test transcript. We carried out forced alignment of our training
corpus with a standard HMM system and then trained models from
the measured durations. Because most possible triphones are not ob-
served in training corpora of reasonable size, some form of interpo-
lation is needed to provide duration estimates for unseen triphones.
Several different approaches to this were tried: matrix factorization,
by the Tucker tensor decomposition and by state clustering.

The state clustering approach used the same software for state-
clustering as the HMM recognition system, and involved single-
Gaussian duration models for each training triphone. A cluster tree
was grown using a list of phonetic questions for the triphone context
in a greedy fashion in a way that minimized entropy of the resulting
triphone clusters. Unseen triphone duration may then be estimated
by walking this tree asking the relevant questions about the phoneme
context until the correct leaf cluster is found. The duration of that
cluster can then be used as the mean duration estimate.

The Matrix factorization approach calculates approximations to
the full positive duration matrix D(p) for each center phoneme p.

4022

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 0 10000 20000 30000 40000 50000 60000 70000

M
ea

n
D

ur
at

io
n

E
rr

or
, 1

0m
s

F
ra

m
es

Number of Parameters

Tensor Approximation
SVD Matrix Factorization

State-Clustered

Fig. 1. Mean Duration Error in Frames, TIMIT Database

If we assign an integer index i for each phoneme p, where i =
f(p), for some indexing function f, then Df(o)f(q)(p) which is the
f(o), f(q) entry of D(p) is defined to be equal to the average du-
ration estimate of the triphone o, p, q seen in training and zero for
triphones not seen. We can compute estimates for triphones that we
have not seen in training by finding a low-rank factorization of D(p),
so that D(p) ≈ A(p)B(p). If there are ~40 phonemes in the system
then D(p) is a 40 × 40 matrix. If we choose A to have much lower
rank (e.g. a 40 × 10, and so B is 10 × 40) then A(p) and B(p) will
have many fewer parameters than D and may be trained robustly us-
ing the amount of data available in the training set. There are several
approaches one might take to doing this factorization. We tried non-
negative matrix factorization[7] as well as rank-reduced SVD (sin-
gular value decomposition, also known as latent semantic analysis)
of D(p) − p̄, where p̄ denotes the average duration of the phoneme
p.

The Tucker tensor decomposition[8] is a rather similar concept
to the matrix factorization approach, based on approximating a ten-
sor using iterative application of SVD to the individual tensor in-
dices, which in this case were the three phoneme labels of the tri-
phone. We tried this using various choices for the core tensor dimen-
sions. Results were rather similar to the SVD matrix factorization.

The results of evaluating these different duration models are ex-
plored in section 3.1 below.

3. EXPERIMENTS

3.1. Duration Model Evaluation

Figure 1 presents the results of evaluating the three different methods
of section 2.4 on the TIMIT database. The models were evaluated by
training on the 173490 triphones of training from TIMIT and tested
on 50124 triphones of held-out test. The test triphones excluded
triphones with a center phoneme of silence. The phoneme set used
was a reduced 39 phoneme one, plus a boundary phone context used
at utterance beginnings and endings.

For the state-clustered duration model, various choices of count
and likelihood thresholds were chosen for the clusters, and the point
plotted was the one for which the best test-set performance was ob-
served. This occurred for 833 state clusters. The resulting mean er-
ror of 2.28 frames is obviously much better than the matrix factoriza-
tion approach at the same number of parameters. Matrix approaches
can train models with very large numbers of parameters without

System Clusters Gaussians WER

Standard ML 4625 38644 7.2%
Autoregressive 4625 35292 13.4%
Autoregressive, 4625 35187 13.1%

spectral radius control
Standard ML, 4647 33941 35.4%
no derivatives

Table 1. WSJ Word Error Rate Comparison

over-training and they ultimately achieve significantly better perfor-
mance. For this training there are only 40×39×40 = 62400 possi-
ble triphones (including utterance boundary context), which is about
equal to the number of parameters for the largest model trained.

The Matrix Factorization approach presented here is the SVD
one. We also tried a maximum-entropy NNMF approach, but the
results were much worse.

The duration model was also tested on a 195305 phoneme
single-speaker corpus and tested on 7486 triphones of test data. The
results were similar, but unsurprisingly the estimated duration error
was lower, by about 0.4 frames.

It is of course possible to fuse these different duration estimation
systems together in order to get a more accurate estimate. Simple
averaging did not seem to result in a meaningful improvement in
performance, but this possibility may merit further exploration.

In order to employ this duration model in synthesis, we actu-
ally require state durations for each state of the synthesis HMM. We
used a state-clustered approach to modeling this in the experiments
reported below:

• The synthesis HMM system was created using a state cluster
tree that was constrained to be identical across each state.

• Forced alignment of training data was extended to provide
state-level alignments.

• The fraction of the total phoneme duration that was expended
in each state of each triphone cluster was estimated by simple
averaging of the times measured in the training data.

Triphone state durations during test were computed by estimating
a particular triphone duration using one of the previous techniques,
then looking up the state time fractions for the triphone state cluster
that contains that triphone. Synthesis state time durations were then
computed as the simple product of these results.

4. RECOGNITION AND SYNTHESIS EXPERIMENTS

We created a baseline ML-trained unadapted non-crossword tri-
phone recognition system and trained it on the WSJ0 corpus, testing
on the 1992 evaluation corpus. The recognition system was a sim-
ple FST-based trainer and LVCSR engine that performs about as
expected on this corpus. This system used a standard mel-cepstral
front end, using 13 mel-cepstral features with first and second
derivatives and causal cepstral mean removal. State-clusters were
extracted from this system and the same state clustering used to
create a single-Gaussian-per-state autoregressive system that used
just the 13 mel-cepstral coefficients as features. The regression or-
der r for this system was 3. It was trained using iterative Gaussian
splitting and ML training. The performance of these two systems is
compared with a standard ML system initialized in the same way as
the Autoregressive system used in table 1.

4023

System Training MOS-LQO State Clusters

EM trained 2.16 3756
Direct Estimation 2.34 3751
Direct Estimation 2.36 4709
Direct Estimation 2.36 6481

Table 2. Narrow-Band PESQ MOS-LQO Measurements, 53 Utter-
ances Read Speech

There is obviously a performance degradation due to using the
the autoregressive modeling, but it is still much better than the identi-
cal system created without derivatives. There are also many avenues
available for improving performance of the autoregressive system,
but absolute performance of it as a recognition system may well not
be very important. Synthesis quality seems to be dominated by the
performance of the recognition system used to estimate state poste-
rior probabilities in training, and this can be a different (and better)
recognition system.

4.1. Synthesis Experiments

We used an approach which is somewhat similar to the way blue-
scores are used in the machine translation community to measure
synthesis accuracy to enable rapid development and optimization of
system parameters. This was accomplished by prerecording test ut-
terances using a live test speaker, doing forced alignment of these
utterances relative to the transcript and then using the derived time
marks to synthesize a comparison waveform. The reference recorded
waveform was then compared acoustically with the synthesized one
using the PESQ algorithm[6], which is an automatic perceptually-
weighted tool in wide use in the speech coding community com-
monly used for measuring speech coder quality. While this approach
is not perfect, we observed that improvements in modeling sophisti-
cation (and code bug fixes) that resulted in gains in recognition per-
formance on WSJ tended to be highly correlated with PESQ score
improvements in synthesis. The PESQ results (MOS-LQO numbers)
are normalized to attempt to match human subject MOS measures
of quality rated on a 1 to 5 scale. Improvements of the order of 0.1
point in MOS-LQO tend to result in quite noticeable audible im-
provements. The PESQ best scores reported here

The HMM synthesis system was a fully crossword state-
clustered triphone system. State clustering was constrained so that
the same cluster tree was used across all three states of all triphone
clusters. Single-Gaussian-per-state-cluster systems were created in
two different ways. One was by direct estimation of statistics using
posterior probabilities estimated from a standard HMM system that
used traditional cepstral features and their derivatives. In another ap-
proach, this autoregressive system was trained from a flat start using
several passes of EM. An initial evaluation was carried out on the
same four-hour single-speaker database used in [5]. A separate read
speech test corpus was collected for PESQ score measurements.
PESQ MOS-LQO measurements were carried out with voicing
forced on and with a constant fixed pitch. An analysis-synthesis
system was used to resynthesize the reference test utterances so that
they also had the same constant pitch and voicing, and no post-
filtering was applied. Thus the comparison only measured coarse
spectral fidelity.

Table 2 presents the results of PESQmeasurement as the number
of triphone clusters increased. The results were were still generally
quite intelligible and this improved substantially when voicing and
pitch were added back to the synthesis.

We also implemented a full synthesis system using pronuncia-
tion dictionaries and the duration model presented in 2.4, training
on voices from the CMU Arctic database. The results were natural
sounding and very intelligible, but probably were not as good as
the freely available HTS system on the same utterances. Adding
post-filtering would improve the perceived quality substantially.
The results appear to be promising and there are many avenues for
improvement, including using Gaussian mixtures, mixed excitation
speech models, more tightly integrated duration models, etc.

5. CONCLUSIONS

The results presented here are obviously preliminary and do not
make a strong case for use of this formulation. Nevertheless, because
statistics for the synthesis HMM may be estimated using posterior
state probabilities from a better performing recognition system, it
seems reasonable to expect that a full synthesis system implemented
in an autoregressive framework with all the same features of existing
HMM systems would perform just as well, and with a considerable
potential reduction in computational complexity. It is also possi-
ble that the autoregressive formulation would have advantages in a
adaptive framework, given that the regression coefficients can easily
be adapted by the MLLR algorithm. Finally we found that matrix
and tensor approximation approaches to duration modeling provided
a substantially more accurate estimate of average triphone duration
than a more traditional state-clustered approach.

6. REFERENCES

[1] M. Shannon and W. Byrne, “Autoregressive HMMs for speech
synthesis,” Proc. Interspeech, 2009.

[2] T. Masuko, K. Tokuda, T. Kobayashi, and S. Imai, “Speech
synthesis using HMMs with dynamic features,” in Acoustics,
Speech, and Signal Processing, 1996. ICASSP-96. Conference
Proceedings., 1996 IEEE International Conference on, vol. 1,
pp. 389–392, IEEE, 1996.

[3] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kita-
mura, “Simultaneous modeling of spectrum, pitch and duration
in HMM-based speech synthesis,” in Sixth European Confer-
ence on Speech Communication and Technology, 1999.

[4] K. Zen, H. Tokuda and T. Kitamura, “Reformulating the HMM
as a trajectory model by imposing explicit relationships between
static and dynamic feature vector sequences,” Computer Speech
and Language, vol. 21, no. 1, pp. 153–173, 2006.

[5] C. Quillen, “Kalman filter based speech synthesis,” in Acoustics
Speech and Signal Processing (ICASSP), 2010 IEEE Interna-
tional Conference on, pp. 4618–4621, IEEE, 2010.

[6] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Perceptual
evaluation of speech quality (PESQ)-a new method for speech
quality assessment of telephone networks and codecs,” in Pro-
ceedings ICASSP 2001, vol. 2, pp. 749–752, 2001.

[7] D. Lee and H. Seung, “Algorithms for non-negative matrix fac-
torization,” Advances in neural information processing systems,
vol. 13, 2001.

[8] L. R. Tucker, “Some mathematical notes on three-mode factor
analysis",” Psychometrica, vol. 31, pp. 279–311, 1966.

4024

