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ABSTRACT
A hierarchical pitch model (HPM) was recently proposed to HMM-
based speech synthesis. In HPM, pitch trajectory is modeled as an
additive combination of hierarchical layers (including state, phone,
syllable, etc), and a minimum generation error (MGE) criterion is
used to re-estimate model parameters. In this paper, we extend the
MGE criterion to a tree-based model clustering process to simul-
taneously cluster the context-dependent models at all layers, and
construct a full MGE training process for HPM training. Experi-
ments were conducted to investigate the effects of HPM with dif-
ferent training criteria and different hierarchical layer combinations.
Experimental results show that the full MGE training can significant-
ly improve HPM’s ability to predict F0 trajectory in TTS over the
ML-based approach on test data. The new HPM also outperforms
the conventional state-level HMM in F0 prediction.

Index Terms— Speech synthesis, hidden Markov model, hier-
archical pitch model, minimum generation error

1. INTRODUCTION

Hidden Markov model (HMM) based speech synthesis, since it was
first proposed [1], has shown its capability to synthesize high qual-
ity speech with a flexible model [2]. In HMM, spectrum, pitch and
duration are all modeled simultaneously in a unified framework [3],
and the parameter trajectories are generated in a maximum probabil-
ity sense from the HMMs related to the parameter trajectories under
a linear constraints between their static and dynamic features.

In conventional HMM-based speech synthesis, a Multi-Space
Distribution (MSD) HMM was used for pitch modeling [4], where
pitch trajectories are modeled at a state level using multi-state phone
HMMs. This pitch modeling method is good at capturing micro
prosodic features (e.g., segmental-level perturbation), but difficult to
directly characterize long-term pitch patterns, such as pitch accen-
t, phrase level prosody, etc. Although the related prosodic factors
are used as context features for context-dependent HMM modeling
and clustering, pitch modeling in this inexplicit way still can not
well characterize the long-term pitch patterns. In order to solve this
over-micro pitch modeling issue, several different methods using hi-
erarchical and/or additive structures had been proposed [5, 6, 7, 8]
to capture the pitch patterns related to different prosodic layers.

Previously, we proposed a hierarchical pitch model (HPM)
based method [9] to address this issue, where pitch trajectory was
decomposed and modeled as an additive combination of hierarchical
layers (including state, phone, syllable and word), and a minimum
generation error (MGE) criterion was used to re-estimate model
parameters for all model layers simultaneously. One issue in this
HPM method is that the tree-based clustering of context dependent
models for different layers are independent, and then the model size
for each layer needs to be tuned manually to achieve a good perfor-
mance. In this paper, we extend the MGE criterion to the tree-based

model clustering process to cluster the context-dependent models at
all layers simultaneously, and construct a full MGE training process
for HPM training. Under this training process, the model sizes for
all HPM layers can be automatically determined.

The rest of this paper is organized as follows. In Section 2, we
review the proposed HPM framework, including the model and layer
definition, and ML-based training process. In Section 3, we present
the details of MGE training for HPM, including MGE-based param-
eter updating, MGE-based model clustering and a full MGE training
process. In Section 4, we describe experiments in evaluating the ef-
fects of HPM modeling, and present results. Finally, we give our
conclusions and future works in Section 5.

2. HIERARCHICAL PITCH MODELING FRAMEWORK

2.1. Model definition

In our HPM, we assume the acoustic feature trajectories (specifically
here, pitch/F0) are generated as a sum of additive components, which
is

o =

L∑
l=1

o(l), ot =

L∑
l=1
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(l)
t , (1)
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[
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1 , ...,o

�
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]�
is an acoustic feature vector, o(l) de-

notes its l-th additive component, and ot and o
(l)
t are the related

t-th frame of feature vectors, respectively. Usually, the observa-
tion vector consists of both static and dynamic features, i.e., o =
[c�,Δ(1)c�,Δ(2)c�]� = Wc, where c, Δ(1)c and Δ(2)c are the
static, delta and delta-delta feature vectors, respectively. W is a lin-
ear regression matrix which represents the constraints between static
and dynamic features.

In training, each additive component in Eq.(1) is modeled by an
independent Gaussian distribution model, which is
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where μ
(l)
t and Σ

(l)
t are the mean and variance of the corresponding

Gaussian distribution at the t-th frame. In synthesis stage, the ad-
ditive acoustic feature component for each model layer is generated
independently [1],
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where ql is the state sequence in the l-th layer model, μ
(l)
ql and Σ

(l)
ql

are the mean vector and covariance matrix related to ql. It should
be noted that the state sequences are time synchronized for all layers
during training and synthesis. Since ql is embedded in the parameter
generation process, we will ignore ql in the rest of the paper. Finally,
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the generated feature vectors of all layers are summed together to
form the final output feature vector, i.e.,

c̄ =

L∑
l=1

c̄(l). (5)

2.2. Layer definition
The prosodic layers adopted in our HPM framework has four layers
including state, phone, syllable and word layers. The state-level and
phone-level models capture the pitch dynamics (e.g., segmental pitch
perturbation, unvoicing/voicing) in a microscopic manner, and the
syllable-level and word-level models model the pitch patterns in a
longer range (e.g., pitch accent, phrase tone, etc.)

We adopt a one-state HMM with a single Gaussian for modeling
pitch in each layer. The main reason we only use one-state HMM
is that the micro prosodic characteristics within each layer can be
represented by the pitch models of lower layers, which may not be
well modeled by a multi-state HMM in the current layer. In addition,
it is easy for implementation to synchronize state sequences between
all HPM layers with a unified one-state HMM.

In HMM-based speech synthesis, the MSD-HMM was used to
model piece-wise continuous F0 contours, disconnected with un-
voiced intervals, where unvoiced/voiced (U/V) property, one of crit-
ical part of pitch modeling, can be well characterized. However, the
long-term pitch patterns associated with high-level prosodic factors
are usually regarded as continuous patterns across a long period, i.e.,
pitch contours on higher prosodic layers should be treated as con-
tinuous. Considering this, we only use MSD-HMM for pitch mod-
eling in the state and phone layers. For the prosodic layers higher
than phone layer, we regard the pitch contours as continuous (i.e.,
all frames are set to be voiced in training and synthesis), and use
conventional HMM for modeling.

2.3. ML-based training process
One key issue in HPM training is on how to decompose pitch tra-
jectories into successive prosodic layers hierarchically, and estimate
the corresponding model parameters of all layers. In our initial ML-
based training process, we use an explicit way to decompose pitch
trajectory into each layer, and iteratively update the HPM parameters
for each layer. The detailed training process is as follows:

1) Train a conventional state-level pitch model, and segment all
training data with the viterbi algorithm. The force aligned
state labels are used for parameter generation in all HPM lay-
ers, and stay unchanged during the whole ML-based training
process.

2) Update the model parameters from the highest layer (i.e.,
word) to the lowest layer (i.e., state) under the following pro-
cedure (shown in Fig. 1):

a) Generate pitch contours using the pitch models of all
layers except for current one;

b) Calculate the residuals between original and generated
pitch trajectories, and use them as training data of cur-
rent layer;

c) Train a pitch model for current layer under a stan-
dard ML-based HMM training process, which includes
context-dependent model training, tree-based cluster-
ing and clustered model re-estimation;

3) Iterate Step 2 until reach certain stopping criterion, e.g., max-
imum number of iterations.

Fig. 1. ML-based hierarchical pitch model training.

There are two issues in the above training process. Firstly, the
ML training criterion is not designed for minimizing synthesis er-
rors. Secondly, the pitch models of each layer are estimated while
freezing the pitch models of other layers. Due to these two issues,
the HPM parameters are not well optimized under the ML-based
training process.

3. FULL MGE TRAINING FOR HPM

A minimum generation error (MGE) criterion was proposed [10] for
model training in HMM-based speech synthesis, and has demon-
strated its effectiveness to improve synthesized speech quality [11].
In this paper, we adopt the MGE criterion in training HPM, including
parameter re-estimation and tree-based clustering for context depen-
dent models.

3.1. MGE-based parameter re-estimation
Similar to [10], the generation error for a given feature vector c is
defined as Euclidean distance between the original feature vector and
generated feature vector, which is

e(c,λ) = ‖c̄− c‖2 =

∥∥∥∥∥
L∑

l=0

c̄(l) − c

∥∥∥∥∥
2

, (6)

where λ denotes the HPM parameters.
The objective of MGE criterion is to optimize the model param-

eters so as to minimize the total generation (synthesis) errors, i.e,

λ̂ = argminE(λ) = argmin
∑
n

e(cn, λ). (7)

As a close-form solution for Eq. (7) is mathematically intractable, a
probabilistic descent (PD) method was adopted for parameter opti-
mization. In PD method, the update of HMM parameters is

λ(τ + 1) = λ(τ)− ετ
∂e(c,λ)

∂λ

∣∣∣∣
λ=λτ

, (8)

where ετ is the step size to control the convergence speed. Finally,
the updates of mean and variance parameters can be formulated as

μ(l)(τ + 1) =μ(l)(τ)− 2ετΣ
(l)−1

WR(l)−1
(c̄τ − cτ ), (9)

logΣ(l)(τ + 1) = logΣ(l)(τ)− 2ετΣ
(l)−1

WR(l)−1

· (c̄τ − cτ )
(
Wc̄(l)τ − μ(l)

)�
, (10)

where μ(l) and Σ(l) are the mean vector and covariance matrix re-
lated to the model sequence ql of l-th layer for feature vector cτ .

4018



3.2. MGE-based model clustering

Similar to the MGE-based model clustering for conventional HMM
training [12], we apply the MGE criterion to HPM clustering, where
the node splitting score is calculated as the reduction of generation
errors after splitting, and the HPM parameters of cluster node are
re-estimated under MGE criterion after each splitting.

In MGE-based model clustering, the parameter updating rules
of MGE criterion are time consuming, which is mainly due to the
sample-by-sample updating manner and the calculation of R−1. In
order to reduce the computational cost, the parameter updates are
simplified, and batch processing is used for parameter updates, i.e.,

λτ+1 =λτ − ετ
∑
n

H−1(cn, λ)
∂e(cn, λ)

∂λ

∣∣∣∣∣
λ=λτ

(11)

where H(cn, λ) is the Hessian matrix. Here we minimize the total
generation error E(λ) with respect to

m(l) =
[
μ

(l)
1

�
,μ

(l)
2

�
, . . . ,μ

(l)
Nl

�]�
, (12)

U (l) =
[
Σ

(l)
1

−1
,Σ

(l)
2

−1
, . . . ,Σ

(l)
Nl

−1
]�
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where m(l) and U (l) are defined by concatenating the mean vectors
and covariance matrices of all unique Gaussian components in the l-

th layer model set; μ
(l)
i and Σ

(l)
i are the mean vector and covariance

matrix of the i-th unique Gaussian component of l-th layer, and Nl

is the number of Gaussian components in the l-th layer, respectively.

To alleviate the computational cost of Hessian matrix, we use
the following pseudo-inverse matrix to approximate the inverse of
Hessian matrix for mean and variance, which are

H̃−1
μ =WW�, (14)

H̃−1

logΣ(l) =Σ(l)−1
WW�. (15)

Then the updating rules for m(l) and U (l) can be formulated as

m(l)(τ + 1) =m(l)(τ)− 2ε(l)τ

∑
n

S(l)(ōn − on), (16)

logU (l)(τ + 1) = logU (l)(τ)− 2ε(l)τ

∑
n

S(l)Σ(l)−1

· (ōn − on)(ō
(l)
n − μ(l))�, (17)

where S(l) is a 3MT × 3MNl matrix whose elements are 0 or 1
determined according to the optimal model sequence ql of l-th layer
for a feature vector cn.

In addition to simplifying the MGE-based parameter updates to
reduce the computational cost, we adopt a method to combine the
MGE with ML criterion to select splitting questions for each node.
In this method, the ML criterion is firstly used to pre-select a subset
of the questions in an efficient way. Then the simplified MGE crite-
rion is applied to select the best splitting question from the subset of
pre-selected questions.

As we mentioned in Sec. 1, one of the problems in ML-based
clustering is that the model clustering for each layer is independen-
t, and we need to manually set the model size for each layer. In
MGE-based model clustering, all the HPMs of all layers are clus-
tered simultaneously, and the tree size of each model layer can be
automatically determined. We only need to set the total number of
models summed over all HPM layers.

Fig. 2. ML/MGE/Full MGE training process for HPM

3.3. Full MGE training process

With the MGE-based parameter re-estimation and model cluster-
ing techniques, we construct a full MGE training process for HPM,
which is shown in the right part of Fig. 2. From this training pro-
cess, the ML criterion is only used to initialize HPM models. After
that, the context dependent model clustering and clustered model re-
estimation are all based on MGE criterion.

3.4. Discussions

In the HPM training, we apply an alignment refining process to re-
fine state alignments during the MGE-based parameter updating and
model clustering. The refining process is a heuristical process to
search optimal alignment under the MGE criterion, which is similar
to [13]. Previous work in [9] demonstrated that the alignment refin-
ing process can improve the MGE training performance for HPMs,
and has little impact on the phonetic spectral models.

As we mentioned in Sec. 2, we used the MSD-HMM for pitch
modeling for state and phone layers, and use conventional contin-
uous HMMs for modeling of higher layers. Therefore, we need to
consider the U/V weights in both state-level and phone-level models
for U/V decision in pitch generation. In our current experiments, this
problem was avoided by directly using U/V decisions from original
pitch trajectory during model training and objective testing. More
investigations are needed to find the best way to combine the U/V
weights of state-level and phone-level models.

4. EXPERIMENTS

4.1. Experimental conditions

A female English speech database containing 3,910 phonetically bal-
anced sentences was used in our experiments. Sampling rate of
recorded speech waveforms was 16kHz, and frame shift was set to
5ms. 2,969 sentences were selected from the database for model
training, and the rest of database is used as test data. The acous-
tic features consist of logF0, 40-th order LSPs and gain. A 5-state
left-to-right HMM with no skip was adopted. Minimum description
length (MDL) criterion [14] was adopted to determine the number
of clustered models in ML-based clustering.

We investigated the effects of three different training processes
for HPM training (including ML training, MGE training, and full
MGE training, which are shown in Fig. 2), and the effects of differ-
ent layer combinations in our experiments. The number of iterations
for ML-based HPM initialization is set to 2, and the number of MGE
training iterations is set to 10. For comparison, we also conducted
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Fig. 3. Effects of different HPM training processes

Fig. 4. Comparison of HPMs at different model layers

the ML, MGE and full MGE training for conventional state-level
HMMs. The alignment refinement is applied in the MGE-based pa-
rameter updating and model clustering process in all experiments. In
order to make a fair comparison, the total numbers of model param-
eters (i.e., number of clustered models) for different training criteria
and different layer combinations are set to roughly the same numbers
by setting MDL values.

4.2. Experimental results

4.2.1. Effects of different training processes

We used the RMSE between generated and original F0 trajectories
as an objective measurement to evaluate the performance of different
pitch models. Because the results of the HPMs with different layer
combinations are similar, here we only show the results for the HPM
with state, phone and syllable layers. Fig. 3 shows the effects of dif-
ferent HPM training processes (ML, MGE and full MGE). It can be
seen that the MGE training significantly improved the performance
of ML-trained HPMs, and the full MGE training further improved
the performance. Comparing to the ML-trained HPMs, the relative
reductions of F0 RMSEs after the full MGE training are 55% and
37% on the close and open test, respectively. In addition, it should
be noted that the differences of F0 RMSEs between close and open
tests become larger after applying the MGE and full MGE training,
which indicates the MGE-based parameter updating and full MGE
training may over-fit the training data.

4.2.2. Effect of different layer combinations

We compared the performance of the following HPMs and the base-
line pitch model:

• Baseline: conventional state-level pitch model

• Phone+State: HPMs at phone and state layers

• Syl+Phn+Stt: HPMs at syllable, phone and state layers

• Word+Syl+Phn+Stt: HPMs at word, syllable, phone and state
layers

The open test results of HPMs under ML, MGE and full MGE train-
ing are shown in Fig. 4. It can be seen that the performance of ML-
trained HPMs are quite similar, and are all worse than the baseline
state-level pitch model. After the MGE training, the HPMs outper-
formed the baseline model, and more layers indicated better perfor-
mance. After the full MGE training, the performance of HPM mod-
els were further improved. However, the HPMs with more layers did
not show appreciable performance improvement, which may due to
the over-fitting issue of the full MGE training.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a hierarchical pitch model (HPM) method with
a full MGE training process, where the MGE criterion has been ap-
plied to context-dependent model clustering and clustered model re-
estimation. Experimental results showed the proposed HPMs with
full MGE training significantly reduced the F0 RMSEs on the test
data, compared to the conventional state-level pitch model. Future
works include conducting a more detailed subjective listening test
and investigating the over-fitting issue in MGE training.
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