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ABSTRACT

Current text-to-speech synthesis (TTS) systems are often perceived
as lacking expressiveness, limiting the ability to fully convey infor-
mation. This paper describes initial investigations into improving
expressiveness for statistical speech synthesis systems. Rather than
using hand-crafted definitions of expressive classes, an unsupervised
clustering approach is described which is scalable to large quantities
of training data. To incorporate this ”expression cluster” informa-
tion into an HMM-TTS system two approaches are described: clus-
ter questions in the decision tree construction; and average expres-
sion speech synthesis (AESS) using cluster-based linear transform
adaptation. The performance of the approaches was evaluated on
audiobook data in which the reader exhibits a wide range of expres-
siveness. A subjective listening test showed that synthesising with
AESS results in speech that better reflects the expressiveness of hu-
man speech than a baseline expression-independent system.

Index Terms— Expressive synthesis, text-to-speech, unsuper-
vised clustering, Average Voice Model, HMM-TTS

1. INTRODUCTION

Proper use of expression makes speech more interesting and aids
understanding of content by adding nuances and information beyond
the pure text content. Expressiveness in speech includes emotions
(e.g. angry, sad), speaking style (e.g. whisper, boasting), and the
“character voices” often used in story reading (e.g. “old man”).
While state-of-the-art TTS systems achieve high intelligibility and
naturalness for reading isolated sentences in a relatively neutral
style, the synthesis of expressive speech is still a challenge.

The first key components in expressive text-to-speech syn-
thesis (ETTS) are the speech corpus used and the annotation of
“expression” in that corpus. In most approaches to date a separate
speech corpus was recorded for each expression of interest [1].
However, creating such dedicated speech corpora is costly and
time-consuming, and typically limited to a handful of expressions,
lacking generalisation. Researchers have started to explore using
audiobooks e.g. [2, 3, 4] as a source of training data for TTS due to
the wide variety of expressions contained. This paper presents an
approach to derive ETTS from audiobook data.

Unlike dedicated emotional corpora, the emotions and speaking
styles are mixed in audiobooks. There is no standard set of classes
for annotating such data so manual annotation is highly subjective,
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with poor inter-annotator agreement. The size of such corpora (10-
20 hours) also makes annotation of multiple books impractical in
terms of time and cost. Therefore an unsupervised clustering ap-
proach is taken here to produce automatic expression annotations.
The aim of the clustering is to place similar (emotion and style) short
book units into the same or proximate clusters. Recently Szekely et
al. [5] have proposed self-organising feature maps to cluster audio-
book data based on voice quality (but no TTS was built). For this
work, hierarchical k-means clustering is used based on acoustic fea-
tures derived from work in emotion recognition [6]. This approach
was chosen due to its simplicity and linear scalability.

Once the expressive clusters are learnt, ETTS can be trained.
HMM-based speech synthesis is used to provide a flexible frame-
work to model the varying expressions. Two approaches are inves-
tigated: incorporating the cluster labels as context features within
the decision tree creation process cf. [7]; and average voice speech
synthesis [8] with the expressive clusters acting as “speakers”.

The final step in realising ETTS is to determine the appropri-
ate expression at synthesis. There are 3 main scenarios for expres-
sion derivation: from text (audiobook reading); given by external
sources (in a dialog system or manually specified); and from au-
dio (speech-to-speech translation). The unsupervised clusters do not
have a human-readable label such as “sad”. However, a machine
learner could be trained to predict the correct expressive cluster ([9]).
Alternatively, for the manual specification case a user might get a
“feel” for the clusters by listening to synthesised examples, possibly
assigning their own, informal labels, prior to selecting the cluster for
a specific utterance. In this paper the issue of how to choose the ap-
propriate cluster is not investigated. It is assumed that the cluster can
be chosen reliably.

The next sections are as follows: Section 2 describes the pro-
posed clustering method for unsupervised labelling of the expres-
sions. The expressive speech synthesis approaches are described in
Section 3. Experimental results are presented in Section 4. Finally
conclusions are drawn in Section 5.

2. UNSUPERVISED CLUSTERING OF EXPRESSIONS

Since there is no agreement of what the optimum set of expres-
sive annotation labels for an audiobook is, unsupervised clustering is
used to place similar (emotion, speaking style and character voices)
book units into the same or proximate clusters. To cluster the train-
ing data into expressions three questions need to be addressed: (i) the
linguistic level at which the features will be labelled, (ii) the nature
of the features, and (iii) the clustering approach.

Emotion recognition and classification is typically performed at

4009978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



the sentence level. This is because the longer the unit of analysis is,
the more stable the result provided the emotion does not change [10].
A lot of the expressive speech in audiobooks occurs within direct
speech whereas the associated carrier phrases, such as ’he said’, tend
to be neutral in style. Therefore for clustering, the audiobook sen-
tences were sub-divided into three types of units: narration, carrier
and direct speech. The presence of double quotation marks in the
audiobook text was used to detect direct speech 1. For example, a
sequence such as:
He said angrily, "Yes! I know. Bye!",
and hung up. Then he left.
would be split into the 6 underlined units: an initial carrier unit
(a part not in quotes of a sentence containing quotes), three direct
speech units, another carrier, and a narration unit (a complete sen-
tence not inside or containing quotes). In this example, the reader
would be expected to convey the angry tone only in the direct speech
units.

There are three primary options in terms of the feature sets that
can be used for the unsupervised clustering: acoustic-only; text-
only; acoustics and text. In synthesis generally only the text will be
available. Typically for emotion recognition and classification only
acoustic features are used, although there has been some very recent
work on combining with text features [9]. For simplicity only acous-
tic features were considered in this work. The feature extraction
followed the commonly used supra-segmental modelling approach.
In this a single, high-dimensional feature vector is extracted for a
speech unit of variable length (e.g. a sentence) e.g. [11]. Low-level
acoustic features are extracted on a frame level and mapped to the
unit level via functionals (mean, standard deviation, etc.).

To derive the feature vector, the Interspeech 2011 Speaker State
Challenge set [6] was used as a starting point. This has 4 ,368 fea-
tures. The set includes a number of items which are not (or poorly)
related to expressiveness, such as spectral features. Therefore, the
list of low-level descriptors was reduced to the following prosodic
descriptors: F0, voicing probability, loudness, voice quality (local
jitter and shimmer, logarithmic HNR). For these descriptors, func-
tionals including arithmetic mean, flatness, standard deviation, and
skewness were applied to yield a set of 163 features, called featA.

Initial experiments using featA indicated a link between utter-
ance length and cluster assignment. This was found to be due to
some features in featA being highly correlated with the utterance
length. A new set of features was produced by removing all features
with a correlation coefficient (wrt. utterance length) higher than 0.2.
A total of 69 features remained in this set, featB. Motivated by [5],
two manually selected feature sets were also created with a minimal
set of prosodic and voice quality descriptors and their functionals:

featC 8 features: mean of F0, voicing probability (pv), local jit-
ter and shimmer, and logarithmic HNR; standard deviation of
F0; mean of absolute delta of F0 and pv .

featD 4 features: mean of F0 and pv; mean of absolute delta of pv;
standard deviation of F0.

Before clustering all feature vectors were standardised to have
zero mean and unit variance. This ensures that all features are
equally accounted for and that badly scaled features do not bias the
clustering.

An unsupervised clustering approach is required. For this work
hierarchical k-means clustering, similar to the x-means algorithm
described in [12], was applied in a cascade of hierarchical binary

1The majority of quoted material is direct speech. However, there are also
“other” uses of quotes. In the present work, these uses were not distinguished.

splits. The number of leaf clusters was controlled using BIC and a
minimum cluster occupancy criterion of 20. A maximum tree depth
of 5 levels limited the maximum number of leaf clusters to 32. A Eu-
clidean distance metric was used to determine which clusters to split.
To improve the stability of the algorithm, the initial cluster centres
in each split were initialised heuristically with a small perturbation
to the left and right of the original centroid.

3. EXPRESSIVE SPEECH SYNTHESIS

Once the expressive clusters are generated, a speech synthesis sys-
tem may be trained. HMM-based speech synthesis is used to provide
a flexible framework to model the varying expressions. Each unit of
the acoustic data is assigned to a leaf node of the hierarchical expres-
sive cluster tree. One approach would be to train individual models
for each cluster leaf node. However, some clusters have very little
data associated with them so the models produced would be poor.
An alternative is to incorporate the expressive cluster assignments
as context features [7] allowing questions to be asked about them in
the decision tree generation process. This allows a balance of quan-
tity of data and context sensitivity to expressiveness. The decision
tree question set is extended to include questions about the clusters
and a mixed-expression model trained using an otherwise standard
mono-speaker training process. Questions are asked about all nodes
in the hierarchical cluster tree, allowing broader expressive classes
to be incorporated into the decision trees. In the logF0 trees of the
decision tree system in Section 4, the path of 98% of the full-context
phones includes these questions for at least one state.

A problem with using the clusters as questions in the decision
trees is that it still fragments the training data. To prevent this an
adaptation based approach can be applied. There are a number of
schemes that could be used. For this work the CMLLR/CSMAPLR
average voice speech synthesis [8] approach is adopted to perform
average expression speech synthesis (AESS). For AESS no cluster
questions are used in the decision tree generation. An expression-
independent, full context maximum likelihood model is trained in
the standard way. Speaker adaptive training based on CMLLR is
then applied with each expression cluster acting as a “speaker”.
Here, the likelihood of the observation o(t), which is uttered using
expression e, from state i can be expressed as
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where e ∈ {1, . . . , E} are expression indices, E corresponds to
the total numbers of expression clusters, and r(i) ∈ {1, . . . , R} is
the regression class for state i. During training the set of state pa-
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cision trees regenerated. Regression class CMLLR transforms are
then trained with the decision trees held fixed and the model param-
eters updated. The state-duration distributions are treated in the same
fashion.

To obtain the models and transforms for synthesis, each expres-
sion cluster is treated as a “target speaker”. The training data for
each cluster is reused as the adaptation data. The CMLLR expres-
sion transforms from training are refined using CSMAPLR to yield
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where μ
i

is the mean vector of the state output distribution of the
average expression model and γt(i) the state occupancy probability,
t(e) is all the data associated with expression e, and τ is the hyper-
parameter 2. At synthesis this MAP adapted model is combined with
the CSMAPLR expression transforms.

4. EXPERIMENTAL RESULTS

4.1. Database

A publicly available audiobook was used for these experiments. The
audiobook is based on the book “A Tramp Abroad” written by Mark
Twain and read by John Greenman 3. This audiobook was chosen as
it includes a large variety of emotions, speaking styles and charac-
ter voices. The book contains 56 chapters and total running time is
15 hours and 46 minutes. The reader uses different speaking styles
for various characters in the book, e.g. “raven speech”, “German
lady”, and he also uses a wide range of emotions and speaking styles
to express funny, bizarre, etc. passages of the book. 7,055 sentences
were extracted from the audiobook (for which the orthographic book
sentence and corresponding audio could be aligned) using the seg-
mentation part of the lightly supervised sentence segmentation and
selection approach [4]. These sentences were further split, using
double quotation marks as delimiters, into 7,371 units (616 carrier,
1,725 direct speech, 5,030 narration).

4.2. Unsupervised clustering and its evaluation

All 7,371 units were clustered using the method outlined in Section 2
for each of the four feature sets described. The number of leaf clus-
ters created and the minimum and maximum number of units per
leaf cluster can be seen in Table 1. As expected, larger feature sets
result in more clusters in total, but fewer extremely large ones.

Feature # features # clusters # units % correct
set /cluster cluster

featA 163 28 49–745 71
featB 69 27 24–713 75
featC 8 20 43–1136 86
featD 4 13 29–1505 70

Table 1. Results from clustering and evaluating four feature sets:
number of resulting clusters, range of number of units per cluster,
percentage of listening test answers where listeners chose the file
from the same cluster as the reference file.

To investigate the influence of feature set choice on clustering
performance, a subjective evaluation was run following [5]. For each
feature set, the following steps were performed after clustering:

• Selection of top 5 most distant cluster pairs: select and remove the
leaf clusters corresponding to the pair with the maximum centroid
distance, repeat this for the remaining pairs, until 5 are selected.

• For each selected cluster pair (A,B), 16 triples were created (AAB,
ABA, BAB, BBA), each consisting of 3 sound files: a reference
sound file from one cluster of the pair, and then one sound file
from each cluster of the pair. The cluster order was balanced.

• A listening test was run in which for each triple 5 listeners were
asked which of the two sound files is more similar in emotion

2For simplicity the impact of the HSMM has been ignored for these equa-
tions.

3Available from librivox.org.

or speaking style to the reference. Their answer was counted as
correct if they chose the file from the same cluster as the reference.

The listening test allows a subjective evaluation of two aspects
of the clustering process. First whether the units assigned to a cluster
exhibit a similar expressive state. Second whether the spread of clus-
ters sufficiently spans the space of expressions so that there are per-
ceptual differences between data from different distant cluster pairs.
Thus, the % correct cluster measure in Table 1 can be viewed as
a subjective form of within-to-between class ratios. It is clear that
the use of featC, with the highest classification performance, satis-
fies these requirements to a greater extent than the alternative feature
sets. The clustering obtained using featC was therefore chosen for
training the ETTS models.

4.3. Training ETTS models

To train and evaluate the ETTS, the book was divided into 5 test4

and 51 training chapters. To be confident of ensuring no mismatch
between the text and audio, only units for which the lightly super-
vised segmentation [4] achieved 100% word accuracy against the
book text were retained for training. At this threshold, 4,809 (73.4%)
of the 6,554 units in the training chapters were selected. The ratio
of narration, direct speech and carrier units was roughly equivalent
to the full set of data with a slight change in the proportion of narra-
tion (70% to 74%) and direct speech (from 26% to 22%) units. This
is due to the lightly supervised approach removing more expressive
speech.

HMM training was performed using a modified version of
the HMM-based speech synthesis toolkit (HTS) v2.2 [13]. The
speech waveforms were sampled at 16 kHz. The observation vector
consisted of the static, delta and delta-delta of 40 mel-cepstral co-
efficients, logF0, and 21 aperiodicity bands (bark-scaled [14]). The
spectrum was obtained with a pitch synchronous analysis, and the
aperiodicity with PSHF [15]. The models were 5 state left-to-right
multi-space probability distribution hidden semi-Markov models
(MSD-HSMM) [8]. The context features were determined using a
proprietary front-end text processor.

Two HMM-TTS systems were produced to represent the expres-
sive speech (see Section 3): decision tree - cluster questions used
in the decision tree construction; AESS - average expression speech
synthesis. The expression-independent model trained before apply-
ing expression adaptive training for AESS was used as a baseline.

4.4. TTS evaluation

It was assumed that at synthesis time the appropriate cluster can be
reliably chosen. To simulate this in the evaluation, the clustering
was performed on both training and test set together. This way, the
cluster assignment of the test sentences is known. This information
was used in synthesis with the decision tree (DT) and AESS systems.

Two aspects of expressive voices need to be evaluated sepa-
rately: the overall synthesis quality, and the expressiveness. Quality
can be evaluated via a standard preference (paired comparison) test,
in which listeners are asked which synthesised version of a sentence
sounds better. This test set-up does not provide the listener with the
context in which the sentence originally appeared. Hence it is im-
portant that only sentences for which the context is unlikely to be
relevant are used. From the 5 test chapters, 50 narration sentences,
out of those that a manual labeller had indicated as emotionally neu-
tral, were randomly chosen.

4Chapters 1, 8, 26, 28 and 39. These chapters were chosen as they con-
tained units from a good variety of clusters during preliminary experiments.
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For evaluating expressiveness, however, it is the context that de-
termines which expression is required, or inappropriate, for a given
sentence. However it is unclear how much context is needed for a
listener to make such a judgement. Since it is impractical to require
listeners to first read some pages of book context before judging each
sentence, the human version of the sentence was used as the refer-
ence, to convey to the listeners which expression was appropriate.
Listeners were asked to choose which of 2 synthesised versions of
the sentence sounded more similar to the reference. For this test, 50
direct speech sentences were chosen from the 5 test chapters, which
a manual labeller had indicated as emotionally non-neutral. The 100
test sentences together covered 19 out of the 20 clusters.

Baseline Expression Rep. No p

DT AESS preference

39.6% 44.0% 16.4% .1882
51.9% 42.6% 5.5% .0503

46.4% 41.6% 12.0% .1708

Table 2. Synthesis quality: neutral narration preference tests.

Baseline Expression Rep. p

DT AESS

48.6% 51.4% .2923
29.5% 70.5% .0000

45.4% 54.6% .0290

Table 3. Expressiveness: non-neutral direct speech similarity tests.
Forced choice. Significantly (two-tailed p-test; p < 0.025) higher
value in boldface.

Listening tests were crowd-sourced via CrowdFlower using Me-
chanical Turk workers located in the US [16]. Each test sentence
was evaluated by 10 listeners. Tables 2 and 3 show the results.
In terms of quality, there was no statistically significant difference
between any of the three systems. With respect to expressiveness,
however, the AESS was significantly more similar to the human ref-
erence speech than the baseline. This is proof of concept that the
proposed unsupervised clustering and the AESS training manages to
capture relevant characteristics of expressive speech. The decision
tree system seems to fall in between the two.

5. CONCLUSION

This paper has described initial investigations into improving the ex-
pressiveness of statistical speech synthesis systems. An approach is
proposed based on unsupervised clustering of audiobook data fol-
lowed by HMM-TTS construction using either cluster questions in
the decision tree construction or average expression speech synthe-
sis (AESS) with cluster-based linear transform adaptation. Synthesis
experiments show that the AESS built from the unsupervised clusters
better reflects the expressiveness of human speech than a baseline
expression-independent system.

The classification performance of the unsupervised clustering
depends on the feature set. Future work will examine optimising
the cluster feature set, including investigating the use of text and au-
dio features. In this paper the appropriate expression cluster was
assumed known in synthesis. Automatically determining the cluster
from text is essential for applications such as ebook reading. Future
work will look into approaches to learn the mapping of the clusters
from the training material to arbitrary text.
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