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ABSTRACT

A new speech intelligibility metric is proposed for the assessment of
speech enhancement processors. These processors usually affect the
fine structure in speech that is of fundamental importance to speech
intelligibility. Classical metrics analyze the entire signal and thereby
generally overestimate intelligibility. The measure presented here,
therefore, isolates speech-transients by a cepstral smoothing tech-
nique and subsequently calculates speech intelligibility using an ef-
ficient version of the speech transmission index. By means of a ge-
netic optimization of adjustable parameters, the proposed transition-
based speech transmission index (TB STI) is adapted to the subjec-
tive data of linearly and nonlinearly processed speech. The method
was assessed on untrained subjective data and showed a considerable
improvement over other well-established measures.

Index Terms— Cepstrum, intelligibility, speech enhancement,
speech perception, transients

1. INTRODUCTION

The algorithmic assessment of speech intelligibility of nonlinearly
processed speech is a prerequisite for an efficient optimization of
speech enhancement processors. The challenge persists in finding
a measure that offers a functional relationship between linearly,
i.e., unprocessed, noise-corrupted speech and nonlinearly processed
noise-corrupted speech.
The envelope threshold distortion (also known as center clipping)
characterizes the effect of nonlinearity of varying gain functions,
which is a widely occurring distortion in speech enhancement pro-
cessors [1, 2]. While there exists a set of qualified measures for
linearly processed speech, e.g., the speech transmission index (STI)
for the assessment of intelligibility in rooms [3], the development
of an overall metric for linear and nonlinear distortions amounts to
one of the major problems in speech processing. Although the re-
search regarding a speech-based intelligibility assessment for noise-
reduction algorithms has evolved for about three decades, we only
recently observe a sudden proliferation of instrumental measures.
This reflects the great demand for a comprehensive intelligibility
metric. An overview on their applicability was recently given in [4].
Moreover, Taal et al. [5] developed the widely regarded short-time
objective intelligibility measure (STOI) for time-frequency masked
speech. For this nonlinear processing, which mimics speech en-
hancement, the STOI surpassed a selection of today’s intelligibility
measures [4, 5].
Even though most intelligibility metrics process the speech signal
continuously, there are only a few measures that account for the
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time varying information content in speech. Kates and Arehart
[1] proposed the coherence-based speech intelligibility index (SII)
and extended this metric by an RMS-based intelligibility weighting
method in short-time frames (I3). The rationale is that the faint
transitional parts in speech are much more important to intelligi-
bility than quasi steady state high energy vowel sections. Speech
enhancement algorithms, however, alter mainly the amplitude in
these low-level sections. The argument was further supported by
Yoo et al. [6], who found that the isolated transient components in
speech, i.e., consonants and consonant-vowel, and vowel-consonant
and vowel-vowel “interfaces”, comprise only 2 % of the original
speech energy and are almost fully intelligible. Based on this un-
derstanding, we recently developed several coherence-based SII
measures that use short-time subband intelligibility-based weights
of the relative information content in speech, i.e., Shannon’s en-
tropy, to label transitional parts [7]. Although the approach was
promising, the proposed metrics were consistently surpassed by the
predictive power of the STOI and the I3 measure. The reason for
this shortcoming is assumed to be in the very general classification
paradigm of voiced and unvoiced speech components, knowing that
the transitional components of speech are difficult to isolate [6].
In this paper, we present a new approach of speech intelligibility
assessment by evaluating only transitional parts in speech. The
method combines a STFT-based cepstrum smoothing technique to
identify transitional parts in speech and a speech-based STI version
to calculate speech intelligibility, i.e., the TB STI. The cepstrum of-
fers a very efficient means to separate the constitutive components of
speech [8]. Subsequently, a binary mask (BM) is created as a stencil
for the transitional parts in the clean and distorted speech signal,
which are then analyzed in a second part of the algorithm proposed
here. The analysis of speech intelligibility employs a speech-based
envelope regression method of the STI. The choice of the STI is
motivated by several advantages of the metric over purely spectral
measures, e.g., the assessment of reverberation, non-stationary in-
terference or the possibility for a binaural extension [2]. In order
to optimize the proposed TB STI, a genetic algorithm was applied
for the adjustment of a set of algorithmic parameters, whereby sub-
jective scores of linearly and nonlinearly processed speech served
as a target function. Finally, the generalizability of the optimized
instrumental measure was tested on untrained subjective data.
In Sec. 2 the algorithmic approach is presented. Sec. 3 reports the
optimization and assessment procedure. In conclusion, Sec. 4 gives
a summary and an outlook.

2. ALGORITHM

In this section the algorithmic approach for predicting speech intel-
ligibility of linearly and nonlinearly processed speech is given. Data
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Fig. 1. Flow chart of the TB STI method. The parameters below the
dashed lines are optimized via a genetic algorithm.

for the assessment of intelligibility is prepared by lowpass filtering
the speech materials at 8 kHz, followed by (re-)sampling at 16 kHz.
Silent passages, defined as the RMS level of −50 dB in frames of
10 ms with respect to the long term RMS of the sentence, are de-
termined in the reference signal x(n) with a voice activity detection
procedure, and are subsequently discarded in the reference and the
degraded signal y(n) at equivalent time samples.
A flow chart of the algorithm is given in Fig. 1. The algorithm com-
prises two stages, i.e., the transient extraction stage and the speech
intelligibility analysis stage. First, the transient detection stage is
introduced. In the initial step, the signals x(n) and y(n) are trans-
formed into the short-time Fourier transform (STFT) domain, using
a 512-point DFT, considering an appropriate means for preventing
circular convolution and spectral leakage in the transformation pro-
cess. This results in the STFT representation X(d, ι) and Y (d, ι),
whereby d = 0, 1, . . . , N − 1 and ι are the frequency bin and the
frame index, respectively. The frame shift ΔT of the STFT is set
to 8 ms, and the length of an analysis frame is 16 ms in the current
implementation, so that the short-time stationarity of speech is pre-
served. The succeeding calculation of the BM is based on the power
spectral density estimation (PSD) of the clean signal. Therefore, a
first-order recursive smoothing operation is applied to the squared
absolute magnitude spectrum:

Ψ1(d, ι) = αΨ1(d, ι− 1) + (1− α)|X(d, ι)|2. (2.1)

The variable α = exp(ΔT/τ) is the smoothing constant that de-
pends on the filterbank frame-shift ΔT and the time constant τ .
A copy of Ψ1(d, ι), denoted Ψ2(d, ι), is subjected to a cepstral
smoothing operation. To independently modify the component sig-
nals of speech in Ψ2(d, ι), the multiplicative signal in the spectral
domain is first linearized by applying the logarithm and then trans-
formed in the cepstral domain with an inverse DFT:

ψ(c, ι) =
1

N

N−1∑
d=0

{logn(Ψ2(d, ι))} ej2πc d
N , (2.2)

where c = 0, 1, . . . , N − 1 denotes the quefrency coefficient. The
following signal modification is based on a first order recursive
smoothing for each quefrency bin:

ψ(c, ι) = αxψ(c, ι− 1) + (1− αx)ψ(c, ι), (2.3)

where the overscore denotes the smoothed cepstral quantities. In the
current implementation, four ranges are defined in order to cover the

elemental parts of speech in the cepstral domain. Each cepstral range
features a particular time constant αx that accounts for the respective
contribution to speech intelligibility:

αx =

⎧⎪⎨
⎪⎩

αloE if c ∈ {0, . . . , cloE}
αhiE if c ∈ {cloE + 1, . . . , chiE}
αp if c ∈ {cp}
αn if c ∈ {chiE + 1, . . . , N/2} \ {cp}

. (2.4)

The lowest range contains the quasi steady state broadband envelope
of speech, i.e., the formants with maxima at resonances of the vocal
filter. The second range comprises the fluctuating envelope compo-
nents in the speech spectrum, i.e., the voiced fine structure of the
speech spectra, that is largely dominated by dynamic articulators in
speech sounds. The third broad range carries, with high probability,
the high fluctuations in unvoiced speech. The pitch of speech also
resides in this third range. Additionally, the cepstrum offers a robust
way for estimating the pitch by taking the maximum value in the
cepstral range of the first harmonic, e.g., cp ∈ {70 Hz . . . 500 Hz}.
With the relation cp = fs/fp, where fs and fp are the sampling fre-
quency of the signal and the pitch frequency, respectively, the pitch
quefrency is calculated via:

cp = argmax
c

{ψ(c, ι)|cp−low ≤ c ≤ cp−high} . (2.5)

In the current implementation, the cepstral coefficients cloE, chiE,
cp−low and cp−high were set to 5, 10, 20 and 200, respectively. After
the cepstral smoothing, the signal is transformed into the spectrum
by calculating the DFT and element-wise exponentiation:

Ψ2(d, ι) = exp

{
N−1∑
c=0

ψ(c, ι)e−j2πd c
N

}
. (2.6)

In the next step, a BM is computed from Ψ1(μ, λ) and Ψ2(μ, λ) in
the following way:

BM(d, ι) =

{
1 if Ψ1(d, ι)−Ψ2(d, ι) > η
Amin otherwise,

(2.7)
where η is a fixed algorithmic criterion and Amin is the maximum
attenuation allowed by the BM operation. By eventually multiplying
BM(d, ι) with X(d, ι) and Y (d, ι), the transitional parts in speech
are isolated for further analysis in the second stage of the TB STI.
As a last step in this transient extraction stage, the clean and the de-
graded stimuli are reconstructed by computing the inverse DFT of
X(d, ι) and Y (d, ι), followed by an overlap-add reconstruction.
The calculation of the STI starts with an auditory-based peripheral
frequency analysis by means of a Gammatone filter bank of 4th or-
der. For reasons of efficiency, only 10 equivalent rectangular band-
width (ERB) filters with center frequencies ranging approximately
logarithmically from 0.5 to 7 kHz on the linear frequency axis, i.e.,
linearly on the ERB scale, are applied. No models of the middle
ear filter or of the loudness adaption are included in the calculation.
The length of the analysis window w(n) of the STI method was set
to 0.4 s, which offers a decent modulation transfer for the envelope
regression method [9]. The Gammatone output signals x̊(b, n) and
ẙ(b, n), where b denotes the ERB channel, are squared and subse-
quently filtered with a FIR lowpass filter. This filter follows the syl-
labic rate of speech and is determined by the filter order o and the
cutoff frequency fsyl, which are algorithmic parameters. Thereafter,
the output of the lowpass stage is down-sampled by a factor of hun-
dred to a sampling frequency of 160 Hz.
As a modulation metric, the stochastic reformulation of the envelope
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regression method of Goldsworthy and Greenberg [10] was chosen.
The modulation M (b) is calculated in each ERB band through the
normalized covariance function:

M (b) =
μx̊(b)

μx̊(b) + μz̊(b)
· E{[̊x(b, n)− μx̊(b)][̊y(b, n)− μẙ(b)]}

E{[̊x(b, n)− μx̊(b)]2} ,

(2.8)
where μx̊, μẙ and μz̊ are the intensity means, and z̊(n) = |̊y(n) −
x̊(n)|. The first factor in Eq. 2.8 was designed to account for non-
linear signal modifications that increase the modulation depth abnor-
mally [10].
The remainder of the STI calculation is in accordance with the stan-
dard approach, as initially proposed in [3]. That is, the band-wise
modulation metric is related to the apparent SNR per band:

aSNRw(b) = 10 log10
M (b)

1− M (b)
, (2.9)

which is subsequently clipped below −15 dB and above 15 dB,
transformed to the transmission index and weighted with a band im-
portance function of average speech. Subsequently, the weighted
band transfer indices are summed to give the STIw. The overall STI
of a sentence is averaged across the analysis windows w.
By employing a Gammatone filter bank and a lowpass filtered hair
cell approximation, the problem of assessing low level envelope re-
gions with the envelope regression method, reported in [9], is cir-
cumvented through a leaky integration of the transitional parts in
speech. As a result, the envelope regression method can be used to
good effect.

3. SPEECH INTELLIGIBILITY MODEL ADAPTION

In order to adapt the proposed STI method to the perception of lin-
early and nonlinearly processed speech, an optimization of the algo-
rithmic parameters shown in Fig. 1, was performed. For this reason,
two speech intelligibility tests were conducted. The first test was
used in the optimization of the STI method and the second test was
used for the assessment of the algorithm on untrained data.

3.1. Optimization

We first describe the listening test used for the optimization of the
proposed STI method. The speech material was taken from the se-
mantically unpredictable sentence (SUS) corpus, which was devel-
oped by Ramirez et al. [11]. The speech files were recorded, lowpass
filtered at 22.05 kHz and sampled at 44.1 kHz. The clean and dis-
torted waveforms were corrected for the headphones that were used
in the listening test. The masking signal was presented at a fixed
level of 70 dB(A) SPL and the target level was changed to the re-
spective SNRs used in the different test conditions. Four subjects of
normal hearing (< 15 dB hearing loss (HL) for both ears) partici-
pated in the first diotic listening test, which offered three trials per
test condition. The recordings were stored for the optimization of
the TB STI measure.
The linear degradations used in the optimization comprised five con-
ditions of additive noise, using the long term spectrum of a male
speaker and a global RMS-based mixing SNR of −8, −5, −2, 1, 4
and ∞ dB. Furthermore, a bandpass filter for wideband speech, i.e.,
a frequency transfer between 0.05 to 7 kHz, was applied to these
conditions. The nonlinear degradations comprised four envelope
threshold conditions of percentages of 50, 60, 75 and 90 % of the
cumulative distributions of the sentence waveform. A description of
the generation of envelope thresholding is given in [1].

In order to optimize the TB STI method, a 3rd order polynomial
was fitted to the data points subsequent to each solution increment
of a genetic optimization procedure. In the course of the optimiza-
tion, the r-squared measure r2 served as an objective function of
the model fit. Table 1 gives the resulting parameters after the opti-
mization. The outcomes of the classical STI (using the speech-based
envelope regression version of [10] with a length of w(n) of 0.4 s)
and the optimized TB STI method are given in Fig. 2 (A) and (B),
respectively. The outcomes show that r2 is considerably increased
as a result of the assessment of only the transitions in speech and the
optimization. Furthermore, Kendall’s τ is given. It indicates a sub-
stantial improvement in favor of the proposed method. An inspec-
tion of the optimized parameters highlights the importance of the
fluctuating envelope fine structure in speech. Consequently, αhiE is
strongly smoothed in the cepstral domain and, hence, maintained af-
ter the subtraction operation in the STFT domain. Furthermore, αp

and αn are moderately smoothed, thereby accounting for their rela-
tive contribution to intelligibility. On the contrary, αloE is hardly
smoothed, showing the negligible importance of the quasi steady
state low-frequent spectral envelope toward intelligibility.

3.2. Assessment

In order to assess the proposed TB STI method, the measure was
evaluated on untrained data and compared to well-established met-
rics, which are the previously introduced STOI and I3. The applied
listening test set comprised five conditions of additive speech shaped
noise of a male speaker, i.e., a global mixing SNR of −5, −3, −1,
1 and ∞ dB, and five conditions of envelope thresholding, i.e., at a
threshold of 60, 75, 80, 85 and 90 % of the cumulative distribution
of a sentence’s waveform. In both kinds of distortions, the signal
was band-limited to a lower and an upper cutoff frequency of 0.05
and 7 kHz, respectively. Eight people with a normal hearing (< 15
dB HL) participated in a percent correct score test that randomly ac-
cessed the 288 sentences of the SUS corpus of Ramirez et al. [11].
Thus, the chances of reproducing the combinations of sentences and
distortions of the listening test that was used in the optimization was
negligible. The subjects had to respond to three versions of each
condition, which were presented to the right ear. The entire test set
was then used in the metrics calculation.
In order to facilitate the comparison with other measures and to de-
rive an absolute speech intelligibility score, we linearized the objec-
tive results s of the STOI and the I3 measure with f(s) = 100/(1+
exp (ms+ n)) and the TB STI with f(s) = 100/(1+ (ms+n)q).
The parameters m, n and q are tuning parameters that were com-
puted in the minimization procedure of the RMS error σ. The choice
for the respective linearization function f(s) was based on the min-
imum σ value. The results of the comparison and the linearization
parameters are given in Figure 2 (C), (D) and (E). Additionally, the
sample correlation r and Kendall’s τ are given. A thorough expla-
nation of the linearization method and the applied statistics can be
found in [4, 5].
As the results show, the proposed method offers the highest correla-
tion r of 0.96 and the lowest error σ of 16 %. Only the τ = 0.82
remains below the τ = 0.87 value of the I3 metric. Overall, the
TB STI performs better than other measures in predicting speech in-
telligibility of the considered speech data.

4. CONCLUSION

In this study, a new speech intelligibility assessment method is pre-
sented that combines the transient detection stage with the speech-
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Table 1. TB STI parameter ranges and results of the genetic optimization.

αloE αhiE αp αn η Amin o fsyl [Hz]

lower bound 0.0001 0.0001 0.0001 0.0001 1e− 8 0.0001 2 3
upper bound 0.99 0.99 0.99 0.99 0.5 0.5 500 40
results 0.19 0.83 0.47 0.42 0.06 0.0037 491 4

SU
S

%

STI TB STI TB STI STOI I3

r2 = 0.71
τ = 0.69

r2 = 0.90
τ = 0.82

r = 0.96
τ = 0.82
σ = 16%

r = 0.92
τ = 0.78
σ = 26%

r = 0.91
τ = 0.87
σ = 29%

m = 9.20
n = −4.75
q = −1.54

m = −7.34
n = 5.70

m = −14.20
n = 13.01
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Fig. 2. Subjective versus objective results of linear (◦) and nonlinear (�) speech conditions. The Plots A and B show the non-linearized
results of the classical envelope regression-based STI and the TB STI, respectively. Plots C, D and E show the linearized results of a second
listening test for the assessment of the TB STI, the STOI and I3, respectively. The errorbars denote the subjective standard deviations.

based STI in order to assess nonlinear speech enhancement proces-
sors. The method was adapted to the subjective perception of lin-
early and nonlinearly processed speech. In a subsequent assessment
on untrained speech data, the proposed measure showed a high pre-
dictive power and outperformed well-established and dedicated mea-
sures of nonlinear speech enhancement.
The method draws its strengths from the intelligibility assessment of
merely the spectrally fluctuating speech-transients. The cepstrum of
the frequency resolution of the DFT offers an excellent tool for iso-
lating transients of different spectral scales. Furthermore, by a ge-
netic model adaptation to subjective date, we verified the importance
of mainly voiced and fluctuating spectral components for speech
intelligibility. These results corroborate recent findings in speech
perception, primarily stating that not high frequency transients, but
“kinematic vowel-like sounds” are of foremost importance to speech
intelligibility [12]. Consequently, the subjectively optimized TB STI
method appears equally useful to the fields of phonetics and linguis-
tics in order to study the basic elements of speech intelligibility.
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