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ABSTRACT

This paper presents an algorithm for automatically estimating
speaker height. It is based on: (1) a recently-proposed model of
the subglottal system that explains the inverse relation observed
between subglottal resonances and height, and (2) an improved
version of our previous algorithm for automatically estimating the
second subglottal resonance (Sg2). The improved Sg2 estimation
algorithm was trained and evaluated on recently-collected data from
30 and 20 adult speakers, respectively. Sg2 estimation error was
found to reduce by 29%, on average, as compared to the previous
algorithm. The height estimation algorithm, employing the inverse
relation between Sg2 and height, was trained on data from the
above-mentioned 50 adults. It was evaluated on 563 adult speakers
in the TIMIT corpus, and the mean absolute height estimation error
was found to be less than 5.6cm.

Index Terms— speaker height, second subglottal resonance,
uniform tube model, automatic estimation

1. INTRODUCTION

Automatic estimation of an unknown speaker’s height from the
speech signal can benefit forensics, and can also provide useful
supplementary information about a speaker in tasks such as anal-
ysis of 911 telephone calls, and automatic speaker identification.
Over the last few decades, several researchers have attempted to
identify acoustic features of speech that can convey information
about speaker height. Most of these efforts rely on the assumption
that an anatomical correlation exists between height and vocal tract
length (VTL). In fact, a study based on magnetic resonance imaging
has shown strong evidence in favor of this assumption [1]. Several
studies have analyzed the correlation between speaker height and
formant frequencies [2, 3, 4]. Although speech production theory
assumes a correlation between formant frequencies and VTL, these
studies report only a weak correlation between formant frequencies
and speaker height. A few studies have also investigated the relation
between height and average fundamental frequency (F0), but have
found no significant correlation between the two [3, 5]. Correlations
between height and other commonly used acoustic features such as
Mel-frequency cepstral coefficients (MFCCs) and linear prediction
coefficients (LPCs) have been reported in a more recent study [6],
which shows that 57% of the variance in height can be explained
by combining the first 10 MFCCs, 16 LPCs and the first 5 formant
frequencies. A few studies have proposed algorithms for automat-
ically estimating speaker height. In [7], speech was parameterized
using the first 19 MFCCs, and height-dependent Gaussian mixture
models (GMMs) were trained using data from all speakers in the
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TIMIT corpus [8]. The height of a given test speaker was then
estimated using the maximum a posteriori classification rule. With
this approach, the estimation error was found to be 5cm or less for
72% of the speakers. However, it should be noted that the same
set of speakers was used for both training and evaluation. In [9]
and [10], regression models were proposed for height estimation.
The models were trained and evaluated using data from 462 and 168
speakers, respectively, in the TIMIT corpus. Using a 50-dimensional
feature vector, a mean absolute error of 5.3cm was achieved. The
features consisted mostly of means, standard deviations, percentiles
and quartiles of MFCCs, F0 and voicing probability. Although the
algorithm yields good results, the relation between these features
and speaker height is not clear.

This paper presents a novel algorithm that does not rely on the
correlation between VTL and height. It is based on a recently pro-
posed uniform tube model of the subglottal system that explains the
inverse relation observed between speaker height and subglottal res-
onances (SGRs) [11]. The model assumes a correlation between
height and the ‘acoustic length’ of the subglottal system, which can
be defined as the length of an equivalent uniform tube (closed at
one end) whose resonant frequencies closely match the actual SGR
frequencies. This assumption is more meaningful than assuming a
correlation between height and formant frequencies since the ‘acous-
tic length’ of the subglottal system does not vary considerably during
speech production. Another important feature of this work is that the
amount of training data and the number of features used for height
estimation are very small in comparison with previous studies. Sec-
tion 2 describes the data used. Section 3 explains the uniform tube
model, and an improved algorithm for automatically estimating Sg2.
Experiments and results of automatic height estimation are discussed
in Section 4. Section 5 concludes the paper.

2. DATA USED

The WashU-UCLA corpus [12, 13] comprises simultaneous record-
ings of microphone and subglottal accelerometer signals from 50
adult speakers (25 males, 25 females) of American English. Ev-
ery speaker, aged between 18 and 24 years, was recorded in two
sessions: one with 14 hVd words (10 monophthongs - in which
we include the approximant [ô] - and 4 diphthongs) and the other
with 21 CVb words (4 monophthongs and 3 diphthongs, in three
different consonant contexts). Every word, embedded in the carrier
phrase, “I said a again”, was recorded 10 times. Only the hVd
words and the corresponding carrier phrases were used in this study.
Speaker heights in the corpus range from 165cm to 188cm for males,
and from 152cm to 175cm for females. The WashU-UCLA corpus
was used for two purposes. (1) Data from all 50 speakers in the
corpus were used to model the inverse relation between SGRs and
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height. Since the modeling involved steady-state measurements of
SGRs, only accelerometer recordings of the 10 monophthongs were
required. (2) Data from 30 speakers (15 males, 15 females) were
used for training the improved Sg2 estimation algorithm, while data
from the remaining 20 speakers were used for evaluation. Since al-
gorithm training involved steady-state measurements of Sg2 as well
as F0 and formant frequencies, it required both microphone and ac-
celerometer recordings of monophthongs. However, since Sg2 (and
hence height) had to be estimated from continuous speech, evalua-
tion was performed on microphone recordings of the carrier phrases.

To evaluate the height estimation algorithm, data from 563 adult
speakers (390 males, 173 females) in the TIMIT corpus were used.
The heights of all the test speakers were within the height range
spanned by the 50 training speakers mentioned above. To assess
the algorithm’s ability to estimate height from telephone speech, a
narrowband evaluation set was also generated by filtering the TIMIT
data with the ITU-T G.712 filter [14], which has a flat frequency
response between 300 and 3400Hz.

3. METHODS

3.1. Uniform tube model of the subglottal system

Subglottal resonances are the poles of the input impedance of the
subglottal system measured by looking down from the top of the
trachea. Although the subglottal system consists of the trachea and
a complex bronchial tree, it was shown in [11] that the first 3 SGRs
can be predicted well by an equivalent uniform tube that is closed at
the glottis and open at the inferior end. The following equation was
used to model the relation between SGRs and speaker height h,

SgN =
(2N − 1)c

4La
=

(2N − 1)c

4h/ka
, N = 1, 2, 3 (1)

where SgN denotes the Nth SGR, c denotes the propagation velocity
of sound waves in the subglottal airways, La denotes the length of
the equivalent uniform tube (or the ‘acoustic length’), and ka is an
empirically determined scale factor that relates h (height) and La.

Inspired by [11], the parameters of the uniform tube model rep-
resented by Eq. (1), were derived as follows: (1) SGRs of all 50
speakers in the WashU-UCLA corpus were measured manually in
the accelerometer signals of 10 different monophthongs. The mea-
surement procedure involved visual inspection of discrete Fourier
transforms (DFTs), LPC spectra and smoothed spectral envelopes
(see [15] for details). Sg1 and Sg2 were measured in anywhere be-
tween 10 and 30 tokens (14 on average) per speaker. Since the low-
pass nature of the accelerometer signal made the measurement of
Sg3 difficult, it was measured in fewer tokens (more than 6 on av-
erage) per speaker; for one speaker, no Sg3 measurements could be
obtained. (2) The actual Sg1, Sg2 and Sg3 of a given speaker were
taken to be the averages of the speaker’s SGR measurements. (3) The
height scaling factor was determined by minimizing the root mean
squared (RMS) error incurred in fitting Eq. (1) to the actual values
of Sg2, Sg3 (but not Sg1) and h, with N set to 2 (for Sg2) or 3 (for
Sg3), and c set to c0 = 35900cm/s, which is the free-field value of
the speed of sound in humid air at body temperature. The scale fac-
tor was found to be equal to 8.803; this value is henceforth denoted

as k̃a. Sg1 was not used in deriving k̃a because, as shown in [11],
the relation between Sg1 and h cannot be modeled by setting c to
c0, but by increasing it to a higher value in order to account for the
non-rigid nature of the subglottal airway walls at low frequencies.
(4) The increased wave propagation velocity, c̃, required to model
the relation between Sg1 and h was determined by minimizing the

RMS error incurred in fitting Eq. (1) to the actual values of Sg1 and

h, with ka set to k̃a. The value of c̃ was found to be 46572cm/s. In
[11], the values corresponding to k̃a and c̃ were reported to be 8.508
and 46900cm/s, respectively. Since the values in [11] were derived
using SGR measurements from just two accelerometer recordings
(per speaker) of the sustained [A] vowel, the parameters derived in
the present study were used for automatic height estimation.
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Fig. 1. (a) The dependence of height estimation error (herr) on the
errors in estimating Sg1, Sg2 and Sg3; herr is most sensitive to Sg1
errors and least sensitive to Sg3 errors. (b) Scatter plot of Sg2 versus
height, and the corresponding empirical relation between them.

3.1.1. Sensitivity analysis of the uniform tube model

The SGR frequencies used to derive the uniform tube model were
obtained from accelerometer signals. However, automatic estima-
tion of speaker height requires SGRs to be estimated automatically
from speech signals. Therefore, it is important to analyze how sen-
sitive the uniform tube model is to SGR estimation errors. It is clear
from Eq. (1) that height estimation using SGRs involves a relation
of the form h = K/x, where K is a constant and x is the frequency
of the SGR used. Hence, the sensitivity of the model to SGR esti-
mation errors is proportional to a quantity of the form, −K/x2 (the
derivative of K/x). This means that height estimation is more sen-
sitive to SGR errors when the SGR frequencies are small. Typically,
SGR frequencies of adults are observed to be in the following ranges:
500-700Hz for Sg1, 1200-1600Hz for Sg2, and 2000-2400Hz for Sg3
[12]. Figure 1(a) shows a plot of height estimation error, herr , ver-
sus SGR estimation error, Sgerr , assuming that the actual values
of the first three SGRs are 600, 1400 and 2200Hz. Naturally, for
a given |Sgerr|, the smallest |herr| can be achieved by using Sg3.
However, existing automatic algorithms can estimate Sg1 [16] and
Sg2 [13] only. Since herr is much more sensitive to Sg1 errors than
to Sg2 errors (see Fig. 1(a)), only the inverse relation between Sg2
and height was used in this study. Figure 1(b) shows the scatter plot
of Sg2 versus height and the corresponding empirical relation based
on Eq. (1): Sg2 = 3×35900×8.803

4×h
. This empirical relation, which

allows speaker height to be predicted from just one feature - Sg2 -
accounts for 59% of the variance in the data. In comparison, [6]
showed that 57% of the variance in height can be explained by us-
ing a 31-dimensional feature vector consisting of MFCCs, LPCs and
formants. This suggests that the ‘acoustic length’ of the subglottal
system is more reliable than VTL for estimating speaker height.

3.2. Improved algorithm for the automatic estimation of Sg2

An automatic algorithm for estimating Sg2 in continuous speech was
proposed in [13]. The algorithm was based on the following central
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idea: Sg2 acts as a boundary between front and back vowels [17], so
that two acoustic features characterizing vowel backness - the Bark
difference between the third and second formants (F3 and F2) and
the Bark difference between F2 and Sg2 - are correlated. These two
acoustic features were denoted in [13] as f3Df2 and f2Ds2, respec-
tively. For ease of representation, the two features will henceforth
be denoted as B32 and B2,S2, respectively. In [13], an empirical
equation was derived to predict B2,S2 from a linear combination of
the first three powers of B32, and a constant term. The empirical
relation allowed Sg2 to be estimated from a speech signal once the
formants F2 and F3 were tracked automatically.

In this study, the empirical relation involving B32 and B2,S2

was derived again using data from 30 speakers in the WashU-UCLA
corpus (as opposed to just 11 speakers in [13]). For each speaker,
F2 and F3 were measured in the steady-state region of 5 tokens from
every monophthong except [ô]. Snack [18] was used for measuring
formants. The measured formants, along with the measured Sg2
values (see Sec. 3.1), were used to derive the following equation.

B2,S2 = −0.004(B32)
3+0.134(B32)

2−1.958(B32)+6.182 (2)

Let the Sg2 estimation algorithm that makes use of the basic regres-
sion model represented by Eq. (2), be denoted as A1. Algorithm A1
was improved in this study by adding two more variables - F3 and F0
(measured using Snack), in Hertz - to the above multi-linear regres-
sion. The motivation behind using F3 and F0 is that they carry some
speaker-related information. Inclusion of speaker-related informa-
tion was deemed necessary because, when the empirical equation
involving B2,S2 and B32 was derived on a speaker-by-speaker ba-
sis, the coefficients of the equation were found to vary considerably
from one speaker to another. The basic regression model (Eq. (2))
resulted in an r-squared (r2) value of 0.891. When F3 and F0 (in
that order) were added incrementally to the model, the value of r2

increased to 0.943 (p < 0.001) and 0.971 (p < 0.001). Thus, the
improved Sg2 estimation algorithm, A2, employs a more complete
regression model that is represented by Eq. (3).

B2,S2 = 0.001(B32)
3 + 0.009(B32)

2 − 1.083(B32)

+ 0.002(F3)− 0.007(F0)− 0.019
(3)

Given a speech signal, the steps involved in estimating Sg2 using
algorithm A2 can now be summarized as follows: (1) Track F0, F2
and F3 automatically using Snack by setting the frame length and
spacing to 30 and 5ms, respectively. (2) Select voiced frames using
the binary parameter ‘probability of voicing’ returned by Snack. (3)
Estimate Sg2 for every voiced frame using Eq. (3). (4) Compute the
average of all the frame-level Sg2 estimates obtained in Step 3 to ar-
rive at an estimate of Sg2 for the given speech signal. Figure 2 shows
the spectrogram of a speech signal along with the Sg2 measured in
the corresponding accelerometer signal, and the estimated Sg2.

3.2.1. Performance analysis of algorithms A1 and A2

The Sg2 estimation algorithms, A1 and A2, were evaluated on 20
speakers of the WashU-UCLA corpus using two performance met-
rics: (1) Mean absolute error (MAE) and (2) Average standard de-
viation (ASD). MAE = 1

MN

∑M
i=1

∑N
j=1

∣∣Sg2ia − Sg2ije
∣∣, where

Sg2a and Sg2e denote the actual and estimated Sg2 values, and M
and N denote the number of speakers and the number of Sg2 esti-
mates per speaker, respectively. ASD = 1

M

∑M
i=1 σi, where σi is the

standard deviation of Sg2 estimates of the ith speaker. To compare
A1 and A2, every Sg2 estimate was obtained using one sentence of
data (< 2 seconds). Table 1 shows the results of Sg2 estimation for

Fig. 2. Spectrogram of a microphone recording of “I said a head
again” (speaker 12), superimposed with the Sg2 track from the ac-
celerometer signal (blue), and the Sg2 estimated using A2 (red). The
actual and estimated Sg2 values are 1385 and 1325Hz, respectively.

both A1 and A2. Clearly, the inclusion of F3 and F0 in A2 reduces
the overall MAE and ASD significantly. Algorithm A2 was also
evaluated by obtaining Sg2 estimates from more than one sentence
of data. When 2 sentences were used per Sg2 estimate, ASD reduced
from 13Hz to 9Hz, and when 5 sentences were used per estimate, it
reduced further to 5Hz. MAE did not decrease significantly; never-
theless, the reduction in ASD suggests that the performance of A2
improves with the amount of data provided.

Metric Males Females Overall
(in Hz) A1 A2 A1 A2 A1 A2 Reduction

MAE 79 61 84 56 82 58 29%

ASD 56 14 40 11 48 13 73%

Table 1. Mean absolute error (MAE) and average standard deviation
(ASD) for the Sg2 estimation algorithms, A1 and A2. Every estimate
was obtained using only one sentence of data, per speaker.

4. EXPERIMENTS, RESULTS AND DISCUSSION

Given a speech signal, speaker height was estimated as follows. (1)
Sg2 was estimated using the improved algorithm A2. (2) An esti-
mate of the height, he, was obtained using the height scaling factor

k̃a = 8.803, and the estimated Sg2 (Sg2e):

he =
3 · c0 · k̃a
4 · Sg2e =

3× 35900× 8.803

4× Sg2e
. (4)

The algorithm incurs two kinds of errors, namely, the error in
estimating Sg2 from speech, and the error in estimating height us-
ing the uniform tube model. Taking this into account, the algorithm
was assessed using two metrics: (1) Speaker-level MAE (MAEsp)
and (2) Sentence-level MAE (MAEst). Both the metrics are essen-
tially the same, equal to 1

MN

∑M
i=1

∑N
j=1

∣∣hi
a − hij

e

∣∣, where ha is
the actual height, and M and N denote the number of speakers and
the number of height estimates per speaker, respectively. The only
difference is that in the calculation of MAEsp, the effect of Sg2 es-
timation errors was mitigated by estimating Sg2 using all the data
available (about 20 seconds per speaker), while to calculate MAEst,
Sg2 and height were estimated on a sentence-by-sentence basis in
order to incorporate the effect of both the errors. Table 2 shows the
results of automatic height estimation. The overall MAEsp is less
than 5.6cm. The overall MAEst is slightly worse as expected, but is
still acceptable.

Since k̃a was obtained using very little data (50 samples), it was
surmised that a different scale factor might provide better estimation
accuracy. A search was performed for the height scaling factor that
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Metric (in cm) Males Females Overall
ka = 8.803

MAEsp 5.88 4.90 5.58 (3.23%)

MAEst 6.25 5.18 5.93 (3.43%)

ka = 8.699 (optimized for TIMIT)
MAEsp 5.33 5.45 5.37 (3.10%)

MAEst 5.73 5.69 5.72 (3.29%)

ka = 8.803; G.712-filtered speech
MAEsp 5.70 4.93 5.46 (3.16%)

MAEst 6.11 5.21 5.84 (3.37%)

Table 2. Speaker-level (MAEsp) and sentence-level (MAEst) mean
absolute errors for the proposed height estimation algorithm. The
numbers in parentheses denote average percentage errors.

resulted in the smallest MAEsp for the TIMIT evaluation set. The
‘optimal’ scale factor was ka

′ = 8.699, corresponding to an MAEsp

of 5.37cm; this is only 0.07cm worse than the best known result (re-

ported in [9] and [10]). Since k̃a differs from ka
′ by less than 1.5%,

a scale factor of 8.803 is expected to yield reasonably good results
in general. More importantly, it must be noted the proposed height
estimation algorithm was trained on just 50 speakers and required
only 3 features, F0, F2 and F3 (effectively, only 1 feature – Sg2),
while the algorithms in [9] and [10] were trained on 462 speakers
and required 50 features. Also, it is clear from Table 2 that there is
little degradation in the algorithm’s performance after G.712 filter-
ing, which means that the algorithm can potentially be used in the
analysis of telephone-based speech.

MAE as a metric of height estimation accuracy is useful, but
it is also limited in some respects. For instance, even a naive esti-
mate equal to the mean height of all 563 TIMIT speakers (174.4cm)
yields an MAE of 6.99cm. As an additional metric, the correlation
between the actual and estimated heights can be particularly infor-
mative: across all 563 TIMIT speakers, the proposed algorithm re-
sulted in a correlation coefficient of 0.72 (r2 = 0.52), indicating that
roughly 52% of the variance in height was successfully accounted
for. This is only slightly less than the variance accounted for in the
training set of 50 speakers (59%), indicating that the algorithm is
fairly robust when generalizing to new speakers.

5. CONCLUSION

The Sg2 estimation algorithm proposed previously in [13] improves
when F3 and F0 are incorporated; the average error reduces by 29%.
Speaker height can be automatically estimated using: (1) the im-
proved algorithm for estimating Sg2, and (2) the inverse relation be-
tween Sg2 and height. The proposed height estimation algorithm
performs equally well for wideband and narrowband speech. With
sufficient data (about 20 seconds), speaker height can be estimated to
within 5.58cm using the empirically determined scale factor (8.803),
and to within 5.37cm using the ‘optimal’ scale factor (8.699), on
average. The novelty of the algorithm is its dependence on the cor-
relation between height and the ‘acoustic length’ of the subglottal
system (and not VTL). The proposed algorithm is much simpler than
the best existing algorithms (yet achieves comparable performance)
because it requires very little training data and just three features –
F0, F2 and F3. The results are likely to improve with more training
data and better Sg2 estimation algorithms. The methods presented in
this paper can be extended to children’s speech as well, if a sizable
corpus of simultaneous speech and subglottal acoustics is available.
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