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EECS, School of Engineering, University of California, Merced. Merced, CA, USA
Email: {mfarhadloo,mcarreira-perpinan}@ucmerced.edu

ABSTRACT

Using data-driven techniques and ultrasound data, it is possible
to learn models that reconstruct the tongue shape of a speaker with
submillimetric accuracy given the location of 3–4 fleshpoints, and
to adapt these models to a new speaker for which little data is avail-
able. In practice, tongue contours extracted from ultrasound imaging
are often incomplete because of shadowing, noise and other factors.
We extend these models to deal with missing data during learning
and adaptation, and show that submillimetric accuracy can still be
achieved even with relatively large amounts of missing data.

Index Terms— tongue model, model adaptation, missing data,
articulatory databases, ultrasound.

1. INTRODUCTION

Realistic models of the shape of the vocal tract, in particular the
tongue, are useful for talking heads [1], articulatory synthesis and
inversion, tracking in ultrasound and MRI, and reconstructing the
tongue contour in articulatory databases such as MOCHA [2],
among other applications. Landmark-based models [3, 4, 5] use
as control parameters the location on the tongue contour of a fixed
number of fleshpoints (landmarks), given which the entire tongue
shape is reconstructed (fig. 1). The predictive mapping from land-
marks to contours is learned given a dataset of full contours obtained
from ultrasound. Nonlinear mappings [5] achieve submillimetric er-
rors (0.2–0.3 mm per point on the tongue). Since collecting contours
is costly, it is convenient to adapt automatically a predictive map-
ping trained on lots of data from one speaker to a new speaker given
only a few full contours from the latter. This can be achieved us-
ing a feature-transformation approach [6, 7], resulting in errors just
slightly larger than training with a large dataset (0.1–0.3 mm more).

In practice, limitations of the recording technique typically
cause missing values in the contour dataset. With ultrasound, con-
tours can appear incomplete for several reasons (fig. 2): disturbances
such as noise and shadows (e.g. by the hyoid bone on the back of
the tongue) occlude portions of the contour; the back or the tip of
the tongue may exit the window of visibility of the probe if moving
excessively forward or backward; tongue surfaces disappear if they
become approximately parallel to the probe (e.g. in sounds where
the tongue tip curves upwards). In addition, the (manual or auto-
matic) segmentation of the tongue contour can also be incomplete.
Missing data can also be created artificially: one can increase the
temporal rate of ultrasound by having the probe skip scan lines, so
that each image has lower resolution (thus trading off missing data
in the temporal and spatial domains) [8]. This can be useful with
sounds such as clicks, for which the tongue moves extremely fast.

All these situations result in partially complete contours for
learning or adaptation. The simplest option, discarding incomplete
contours, is wasteful, because recording and segmentation are costly
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Fig. 1. Prediction problem: given the 2D locations of K landmarks
on the tongue midsagittal contour x, reconstruct the entire contour
y, represented by P 2D points, by a predictive mapping y = f(x).

Teeth shadow
(front)

(back)
Hyoid bone shadow

Midsagittal tongue contour

Fig. 2. Missing tongue portions in typical ultrasound images.

and cumbersome (requiring significant expert intervention); and
it can severely reduce the number of complete contours available,
particularly in the adaptation setting, where very few contours are
collected in the first place. This makes it imperative to use all
contours, complete or not. Another approach to the problem is to
reconstruct first the contours and then learn or adapt the model. This
might be achieved with a matrix completion algorithm, or directly
during the segmentation itself, or combining ultrasound with another
recording technology (such as MRI) to complete the contours. In
this paper we follow a third approach: we assume we are given a
dataset of full contours with missing values and learn or adapt a
model without explicitly reconstructing the contours, by exploiting
the implicit temporal and spatial redundancy of the tongue contours.
We make no specific assumptions about the mechanism that caused
the values to be missing. We use a generic approach called missing
data deleted [9] that is applicable to regression models in which the
variables having missing values appear as a sum-of-squares form. In
this case the objective function has a single term for each data item,
and we drop the ones that are missing. As long as the remaining
terms sufficiently constrain the model—in our case thanks to the
temporal and spatial smoothness of the tongue contours—the result-
ing mapping will be able to achieve accurate predictions. We review
the learning and adaptation of tongue shape models and describe
our extension to missing data in section 2, and demonstrate their
empirical performance in section 3. Although our experiments focus
on the midsagittal tongue contour, our algorithms carry over to 3D
shapes of the tongue or other vocal tract articulators.
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2. LEARNING AND ADAPTING THE TONGUE MODEL

2.1. Predictive model with missing data

We define the tongue reconstruction problem (fig. 1) as in [5]. Of the
P points along the contour, we choose K (say, 3) to represent the
landmarks, mimicking electromagnetic articulography (EMA) pel-
lets affixed to the tongue; call this vector x ∈ R

2K . The goal then
is to predict all P points (or rather, the remaining P − K) using a
mapping f(x) = y that we estimate from a training set. Consider a
training set {xn,yn}

N
n=1 , collected in matrices X = (x1, . . . ,xN )

of 2K ×N and Y = (y1, . . . ,yN ) of 2P ×N . Each xn is a con-
tour subset x = (xT

1 , . . . ,x
T
K)T ∈ R

2K consisting of K landmarks
xi ∈ R

2, and each yn is a full contour y = (yT
1 , . . . ,y

T
P )

T ∈ R
2P .

The goal is to fit a predictive mapping f :y = f(x) by least squares
from x to y. When the training set is complete (without any missing
values) the objective function of [5] consists of 2PN additive terms:

minf E(f) =
∑N

n=1

∑2P
j=1 (yjn − (f(xn))j)

2 (1)

where yjn and (f(xn))j are the j th component of the nth training and
predicted output vectors, respectively. In the missing data deleted
approach, and assuming that no landmarks x are missing, we drop
terms corresponding to missing values yjn:

minf E(f) =
∑

present n,j (yjn − (f(xn))j)
2. (2)

As long as we have enough values present, f is still determined by
the data. We have developed this approach for linear mappings and
radial basis function (RBF) networks, but report here only the lat-
ter. Consider an RBF network with M Gaussian basis functions
φm(x) = exp(− 1

2
‖(x− μm)/σ‖2) of width σ and centre μm:

f(x) = Wφ(x) +w =
∑M

m=1 wmφm(x) +w.

As is common with RBFs, we apply a suboptimal but efficient train-
ing strategy. We first obtain the basis function centres with k-means
on the input data and fix them. Then we find σ by cross-validation.
To avoid overfitting we add a quadratic regularisation term on W

with weight λ ≥ 0 to the objective function. Finally, the minimum
over the weights W is the unique solution of the linear system(
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T
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)
where the Nj,P × 1 vector yj,P contains the present components of
the j th row of matrix Y, 1j,P is a Nj,P × 1 vector of ones, Φj,P

contains the columns of Φ corresponding to yj,P , and wT
j is the j th

row of W.

2.2. Adaptation with missing data

We are now given a small number of full contours from a new
speaker, insufficient to train reliably a predictive mapping. Instead,
we adapt an existing mapping f from another speaker that was
trained with lots of data. We follow the local feature transformation
approach of [7], where we estimate two invertible linear transfor-
mations gx and gy (with few parameters) that map new data to old
data in the landmark (x) and contour (y) spaces, respectively. Each
mapping g is defined as a concatenation of separate, local linear
mappings that map a 2D point to another 2D point:

x̃ = gx(x) =

(
Ax

1
x1+bx

1
...

Ax

KxK+bx

K

)
, ỹ = gy(y) =

(
A

y

1
y1+b

y

1
...

A
y

P
yP+b

y

P

)
.

The adapted predictive mapping is given by g−1
y ◦ f ◦ gx and re-

quires estimating 6(K + P ) parameters that we write collectively
as (Ax,bx,Ay,by); this is far fewer parameters than training f di-
rectly in (1). The adapted model is linear if f was linear, and a basis
function network where the basis functions are non-radial if f was an
RBF network. When the adaptation dataset is complete (no missing
data) the objective function of [7] is

E(Ax,bx,Cy,dy) =
∑N

n=1

∥∥yn − g−1
y (f(gx(x)))

∥∥2
(3)

where we introduce C
y
j = (Ay

j )
−1, dy

j = −(Ay
j )

−1b
y
j , simpli-

fying the optimisation (no matrix appears as an inverse). We can
add a regularisation term to E as in [7, 10], particularly with small
datasets, but in this paper we do not do so to keep the experiments
simple. With missing values in the adaptation contours and again as-
suming no landmarks are missing, we drop the terms corresponding
to missing values yjn and write the following objective function:

E(Ax,bx,Cy,dy) =
∑N

n=1

∥∥mn ◦ [yn − g−1
y (f(gx(x)))]

∥∥2
(4)

where we define the 2P ×N binary matrix M = (m1, . . . ,mN ) so
min = 0 or 1 indicates yin is missing or present, respectively, and ◦
denotes elementwise product. (In the actual code we do not use M

and simply skip zero terms.) To minimise E we need its gradients:

∂E
∂ vec(Ax)

= 2
∑N

n=1 r
T
n,MPx

n,M Px
n,M =

∂rn,M

∂ vec(Ax)

∂E
∂ vec(bx)

= 2
∑N

n=1 r
T
n,MQx

n,M Qx
n,M =

∂rn,M

∂ vec(bx)

∂E
∂ vec(Cy)

= 2
∑N

n=1 r
T
n,MP

y
n,M P

y
n,M =

∂rn,M

∂ vec(Cy)

∂E
∂ vec(dy)

= 2
∑N

n=1 r
T
n,MQ

y
n,M Q

y
n,M =

∂rn,M

∂ vec(dy)

where rn,M = mn◦[yn−diag
(
zT
in ⊗ I2

)
vec (Cy)−vec (dy)] =

mn◦[yn−diag (Cy
i ) zn−vec (dy)] and zn = (zT

n1, . . . , z
T
nP )

T =
f(gx(xn)). For a linear mapping f(x) = Wx+w we obtain (⊗ is
the Kronecker product):

Px
n,M = (mn1

T ) ◦ (− diag (Cy
i )W diag

(
xT

i ⊗ I2)
)

Qx
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P
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)
)

Q
y
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T ) ◦ (−I2P )

and for an RBF network (where K = (μ1, . . . ,μM )):

Px

n,M = (mn1T )◦
(

1

σ2
diag(Cy

i )W diag(Φ′
n)(x̃n1T

M−K)T diag(xT
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)
Qx
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1
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)

and the same equations for Py
n,M and Q

y
n,M as for the linear map-

ping. Both the linear and RBF cases require nonlinear optimisation
of E using these gradient equations. We found the BFGS algorithm
[11] to be effective and reliable. Since E has local optima, we ini-
tialise it from the solution obtained by a PCA adaptation method [7].

2.3. Computational complexity

Both missing-data objective functions, (2) for training and (4) for
adaptation, have (1−ρ)PN terms where ρ ∈ [0, 1] is the proportion
of missing data. Since training/adaptation have a cost linear in NP ,
the missing-data optimisation is actually faster (assuming the same
number of iterations), though the accuracy degrades if ρ is too large.
Imputation methods (e.g. with splines, sec. 3), are slower because
they first reconstruct all contours (so ρ = 0), and then optimise.
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Fig. 3. Missing at random pattern. Left plot: predictive error E for adaptation and retraining with different amounts of missing data, as a
function of the number of adaptation contours N (for K = 3 landmarks). Right two plots: predictive error E for adaptation as a function
of the number of landmarks K (for N = 30 and N = 100 adaptation contours, respectively). The ground truth line is the optimal baseline
(training with lots of contours without missing data). Errorbars over 5 random choices of the N adaptation contours.
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Fig. 4. Missing at random pattern. Like fig. 3(left) but comparing our algorithms (blue lines) with retraining/adaptation after mean imputation
and spline imputation.

3. EXPERIMENTS WITH ULTRASOUND CONTOURS

Dataset We used the ultrasound database created at Queen Mar-
garet University and the University of Edinburgh [5]. It contains
two speakers (one male, maaw0, and one female, feal0) with dif-
ferent Scottish accents. Each speaker recorded a set of 20 British
TIMIT sentences designed to be phonetically balanced. Recordings
for maaw0 and feal0 were done in two and one sessions respec-
tively; we used only the first session of maaw0. We used maaw0 to
obtain a reference model, which we adapted to data from feal0 as
target speaker having missing values. We partitioned the data at ran-
dom so maaw0 contained 2 236 training frames and 1 491 testing,
and feal0 contained up to 4 363 training and 2 909 testing. Each
tongue contour contains P = 24 points for both speakers. For most
experiments, we select K = 3 pellets at indices (2,9,19), roughly
corresponding to the MOCHA pellet positioning [2].

Missing data patterns We considered two different patterns: (1)
missing at random, where any point in any contour has a uniform
probability ρ of being missing (for ρ = 0%, 20%, 40%, 60%).
This is representative of random ultrasound noise. (2) Missing runs,
where each contour has a single sequence of 8 consecutive points
that are missing, at the front, middle or back of the tongue (a propor-

tion of 33% missing data). This is representative of shadowing and
other effects.

Comparison methods In all cases we use RBF networks for the
predictive mapping f . We compared our missing-data adaptation al-
gorithm of sec. 2.2 with: (1) an optimal baseline where we train the
model on a large amount of complete full contours from the new
speaker. (2) Retraining a new model from scratch (i.e., disregarding
the reference model f ) using only the adaptation, incomplete con-
tours of the new speaker, with our missing-data learning algorithm
of section 2.1. (3) Mean imputation: reconstructing each missing
value yjn with the mean of all present values yjm and then running
the complete-data adaptation algorithm of [7]. (4) Spline imputation:
reconstructing the missing points by fitting a cubic spline separately
to each contour using the points present in it and then running the
complete-data adaptation algorithm of [7]. With the spline, we as-
sume missing points are equidistant within a run, and for missing
runs at either end of the contour, we estimate the run length propor-
tionally to the runs that are present in that same contour.

Results Fig. 3(left) plots the error after adaptation/retraining as a
function of number of contours N for different proportions of miss-
ing data. Both our learning and adaptation algorithms can tolerate
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Fig. 5. Missing runs pattern. Left: like fig. 4. Middle: illustration for some contours of the mean and spline imputation with the random and
runs missing data patterns. Right: sample contours with missing runs.

up to 60% random missing data with little performance decrease. In
adaptation, with as few as N = 30 contours and almost indepen-
dently of the proportion of missing data (up to 60%), we achieve an
error which is less than 0.5 mm from the optimal baseline (note the
ultrasound measurement error itself is about 0.4 mm). This is also
seen on fig. 3(right) over the range of K. With very few contours
(N < 30), up to 20% missing data is still tolerated. Retraining is
also largely insensitive to missing data up to 60%, but it is useless
for N < 30 and it only catches up with adaptation for N = 80 to
150 contours (the larger N the more values are missing), validating
the effectiveness of adaptation with small datasets.

Figs. 4–5 compare our adaptation/retraining algorithm (blue
lines) with mean and spline imputation. From fig. 5(middle) we see
that mean imputation often produces significantly distorted tongue
reconstructions, while spline imputation can be very good depending
on which points are missing; it tends to produce errors when long,
curved runs are missing, particularly at the contour ends. The pre-
dictive errors for retraining and adaptation are consistent with this:
mean imputation does very poorly (off the plot in missing runs);
spline imputation does slightly worse than our algorithm for random
missing data, but significantly worse for missing runs (additional
error of 0.4 mm or more). Thus, our algorithm is preferable in terms
of accuracy, computation time and preprocessing needed.

Adapting with our algorithm with N = 60 contours takes 7
minutes with no missing data and 5.6 min. with 60% missing data.

4. DISCUSSION

Our algorithms are practically convenient because of their simplicity
(no special preprocessing required of the missing data), fast runtime
and good accuracy. A limitation is that none of the landmark loca-
tions can be missing. This is not very problematic in the practically
common case of missing runs if landmarks correspond to the loca-
tion of pellets in EMA as in MOCHA [2]: missing runs typically
occur at the back or tip of the tongue, where pellets are not located
(pellets attached to the tip easily drop, while the gag reflex prevents
attaching pellets deep inside the throat). However, more sophisti-
cated algorithms that can deal with missing inputs are possible and
should be studied in future work.

The algorithm in [12] considers a special type of adaptation with
missing data, where in each adaptation contour all points are miss-
ing except the landmarks. That algorithm is specifically intended to
reconstruct the tongue contour in EMA databases such as MOCHA
[2], and is not applicable to our local feature transformation model.

5. CONCLUSION

We have extended a landmark-based model of the tongue shape to
deal with missing data at both learning and adaptation times. Com-
pared to the case where there is no missing data, the new algo-
rithms achieve a comparable accuracy with less computation time
even when much of the data is in fact missing, thanks to the tempo-
ral and spatial redundancy of the data. They require no special user
preprocessing beyond indicating what values are missing. A limi-
tation of our approach, which future work may address, is that the
landmarks themselves cannot be missing.
Acknowledgments. Work funded by NSF award IIS–0711186.
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and S. Renals, “Predicting tongue shapes from a few landmark
locations,” in Proc. Interspeech, 2008, pp. 2306–2309.
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